
�

�

�

�

�

�

�

�

12

Parallel Abductive Query Answering in Probabilistic Logic Programs

GERARDO I. SIMARI, JOHN P. DICKERSON, AMY SLIVA, and V. S. SUBRAHMANIAN,
University of Maryland College Park

Action-probabilistic logic programs (ap-programs) are a class of probabilistic logic programs that have been
extensively used during the last few years for modeling behaviors of entities. Rules in ap-programs have the
form “If the environment in which entity E operates satisfies certain conditions, then the probability that E
will take some action A is between L and U”. Given an ap-program, we are interested in trying to change
the environment, subject to some constraints, so that the probability that entity E takes some action (or
combination of actions) is maximized. This is called the Basic Abductive Query Answering Problem (BAQA).
We first formally define and study the complexity of BAQA, and then go on to provide an exact (exponential
time) algorithm to solve it, followed by more efficient algorithms for specific subclasses of the problem. We
also develop appropriate heuristics to solve BAQA efficiently.

The second problem, called the Cost-based Query Answering (CBQA) problem checks to see if there is
some way of achieving a desired action (or set of actions) with a probability exceeding a threshold, given
certain costs. We first formally define and study an exact (intractable) approach to CBQA, and then go on
to propose a more efficient algorithm for a specific subclass of ap-programs that builds on the results for
the basic version of this problem. We also develop the first algorithms for parallel evaluation of CBQA. We
conclude with an extensive report on experimental evaluations performed over prototype implementations
of the algorithms developed for both BAQA and CBQA, showing that our parallel algorithms work well in
practice.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—Un-
certainty, “fuzzy,” and probabilistic reasoning; I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Probabilistic reasoning, imprecise probabilities

ACM Reference Format:
Simari, G. I., Dickerson, J. P., Sliva, A., and Subrahmanian, V. S. 2013. Parallel abductive query answering
in probabilistic logic programs. ACM Trans. Comput. Logic 14, 2, Article 12 (June 2013), 39 pages.
DOI:http://dx.doi.org/10.1145/2480759.2480764

The authors gratefully acknowledge funding support for this work provided to the Lab for Compu-
tational Cultural Dynamics (LCCD) by the Army Research Office under grants W911NF0910206 and
W911NF1110344, the Army Research Lab under grant W911NF0920072, the Air Force Office of Scien-
tific Research under grant FA95500610405 and the National Science Foundation under grants 0540216 and
SES0826886.
G. I. Simari is currently affiliated with the University of Oxford. J. P. Dickerson is currently affiliated with
Carnegie Mellon University. A. Silva is currently affiliated with Northeastern University.
Authors’ addresses: G. I. Simari, Department of Computer Science, Wolfson Building, Parks Road, Uni-
versity of Oxford, Oxford OX1 3QD, UK; J. P. Dickerson, 9219 Gates-Hillmman Center, Carnegie Mellon
University, Pittsburgh, PA 15213; A. Sliva, College of Computer and Information Science, 256 West Vil-
lage H, Northeastern University, Boston, MA 02115; V. S. Subrahmanian, Department of Computer Science,
University of Maryland College Park, College Park, MD 20742; email: vs@cs.umd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1529-3785/2013/06-ART12 $15.00
DOI:http://dx.doi.org/10.1145/2480759.2480764

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:2 G. I. Simari et al.

1. INTRODUCTION

Action probabilistic logic programs (ap-programs for short) [Khuller et al. 2007]
are a class of the extensively studied family of probabilistic logic programs (PLPs)
[Kern-Isberner and Lukasiewicz 2004; Ng and Subrahmanian 1992; 1993]. ap-
programs have been used extensively to model and reason about the behavior of groups
and an application for reasoning about terror groups based on ap-programs has users
from over 12 US government entities [Giles 2008]. ap-programs use a two sorted logic
where there are “state” predicate symbols and “action” predicate symbols1 and can be
used to represent behaviors of arbitrary entities (ranging from users of web sites to in-
stitutional investors in the finance sector to corporate behavior) because they consist
of rules of the form “if a conjunction C of atoms is true in a given state S, then entity
E (the entity whose behavior is being modeled) will take action A with a probability in
the interval [L, U].”

In such applications, it is essential to avoid making probabilistic independence
assumptions, since the approach involves finding out what probabilistic relationships
exist and then exploiting these findings in the forecasting effort. For instance, Figure 1
shows a small set of rules automatically extracted from data [Asal et al. 2008] about
Hezbollah’s past, where predicates correspond to rules in the data set and in general
a value of zero indicates that the action is not performed or the condition does not
hold2. Rule 1 says that Hezbollah uses kidnappings as an organizational strategy
with probability between 0.5 and 0.56 whenever no political support is provided to
it by a foreign state (forstpolsup), and the severity of inter-organizational conflict
(intersev1) is at level “c.” Rules 2 and 3, also about kidnappings, state that this action
will be performed with probability between 0.8 and 0.86 when external support is
solicited by the organization (extsup) and either the organization does not advocate
democratic practices (demorg) or electoral politics is not used as a strategy (elecpol).
Similarly, Rules 4 and 5 refer to the action “civilian targets chosen based on ethnicity”
(tlethciv). Rule 4 states that this action will be taken with probability 0.49 to 0.55
whenever the organization advocates democratic practices, while the second states
that the probability rises to between 0.71 and 0.77 when electoral politics is used as
a strategy and the severity of inter-organizational conflict (with the organization with
which the second highest level of conflict occurred) was not negligible” (intersev2).
ap-programs have been extensively (and successively) used by terrorism analysts to
make predictions about terror group actions [Giles 2008; Mannes et al. 2008b].

Suppose, rather than predicting what action(s) a group would take in a given situa-
tion or environment, we want to determine what we can do in order to induce a given
behavior by the group. For example, a policy maker might want to understand what
we can do so that a given goal (e.g., the probability of Hezbollah using kidnappings as
a strategy is below some percentage) is achieved, given some constraints on what is
feasible. The basic abductive query answering problem (BAQA) deals with finding how
to reach a new (feasible) state from the current state such that the ap-program associ-
ated with the group and the new state jointly entail that the goal will be true within a
given probability interval.

In this paper, we first briefly recall ap-programs and then formulate BAQA theoret-
ically. We then develop a host of complexity results for BAQA under varying

1Action atoms represent only the fact that an action is taken, and not the action itself; they are therefore
quite different from actions in domains such as AI planning or reasoning about actions, in which effects,
preconditions, and postconditions are part of the specification. We assume that effects and preconditions are
generally not known, though later on we show how to represent the information we may have about them.
2Note that variables in general can have more than two possible values; therefore, even though kidnap(1)
is equivalent to ¬kidnap(0) because kidnap is a binary variable, this does not hold in general.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:3

assumptions. We then describe both exact and heuristic algorithms to solve the BAQA
problem. We briefly describe a prototype implementation and experiments showing
that our algorithm is feasible to use even when the ap-program contains hundreds of
rules.

Following this, we take the problem one step further by reasoning about how the
entity being modeled reacts to our efforts. We are interested in identifying the best
course of action on our part, given some additional inputs regarding the cost of ex-
erting influence in the environment and how desirable certain outcomes are; this is
called the cost-based query answering problem (CBQA). We then investigate an ap-
proach to solving this problem exactly based on Markov Decision Processes, showing
that this approach quickly becomes infeasible in practice. Afterwards, we describe a
novel heuristic algorithm based on probability density estimation techniques that can
be used to tackle CBQA with much larger instances. We then develop the first parallel
algorithms for abduction in probabilistic logics. Finally, we describe a prototype imple-
mentation and experimental results showing that our parallel algorithm scales well in
practice and achieves results that are useful in practice.

A brief note on related work before we begin. Almost all past work on abduc-
tion in such settings have been devised under various independence assumptions
[Christiansen 2008; Poole 1997, 1993]. We are aware of no work to date on abduction
in possible worlds-based probabilistic logic systems such as those of Hailperin [1984],
Nilsson [1986], and Fagin et al. [1990] where independence assumptions are not made.
Last, but not least, we are not aware of any parallel implementations of abduction even
in the setting with probabilistic independence assumptions, or scalability results that
match the results in this paper on real-world data and applications.

2. PRELIMINARIES

We now overview the syntax and semantics of ap-programs from Khuller et al. [2007].

2.1. Syntax

We assume the existence of a logical alphabet that consists of a finite set Lcons of
constant symbols, a finite set Lpred of predicate symbols (each with an associated arity)
and an infinite set Lvar of variable symbols; function symbols are not allowed. Terms,
atoms, and literals are defined in the usual way [Lloyd 1987]. We assume that Lpred is
partitioned into disjoint sets: Lact of action symbols and Lsta of state symbols. Thus, if
t1, . . . , tn are terms, and p is an n-ary action (resp. state) symbol, then p(t1, . . . , tn), is
called an action (resp. state) atom.

Definition 2.1 (Action Formula). A (ground) action formula is defined as:

— a (ground) action atom is a (ground) action formula;
— if F and G are (ground) action formulas, then ¬F, F ∧ G, and F ∨ G are also (ground)

action formulas.

The set of all possible action formulas is denoted by formulas(BLact), where BLact is the
Herbrand base associated with Lact, Lcons, and Lvar.

Definition 2.2 (ap-Formula). If F is an action formula and μ = [α, β] ⊆ [0, 1], then
F : μ is called an annotated action formula (or ap-formula), and μ is called the ap-
annotation of F.

In the following, we will use APF to denote the set of all possible ap-formulas.

Definition 2.3 (World/State). A world is any finite set of ground action atoms. A
state is any finite set of ground state atoms.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:4 G. I. Simari et al.

Fig. 1. A small set of rules modeling Hezbollah.

It is assumed that all actions in a world are carried out more or less in parallel and
at once, given the temporal granularity adopted along with the model. Contrary to
(related but essentially different) approaches such as stochastic planning, we assume
here that it is not possible to directly reason about the effects of actions. One reason for
this is that in many applications (e.g., counterterrorism), there are many, many vari-
ables, and the effects of our actions are not well understood. We now define ap-rules.

Definition 2.4 (ap-Rule). If F is an action formula, B1, . . . , Bn are state atoms, and
μ is an ap-annotation, then F : μ ← B1 ∧ . . . ∧ Bm is called an ap-rule. If this rule is
named r, then Head(r) denotes F : μ and Body(r) denotes B1 ∧ . . . ∧ Bn.

Intuitively, the rule we have specified says that if B1, . . . , Bm are all true in a given
state, then there is a probability in the interval μ that the action combination F is
performed by the entity modeled by the ap-rule.

Definition 2.5 (ap-Program). An action probabilistic logic program (ap-program for
short) is a finite set of ap-rules. An ap-program �′ such that �′ ⊆ � is called a subpro-
gram of �.

Figure 1 shows a small portion of an ap-program we derived automatically to model
Hezbollah’s actions. On the average, we have derived ap-programs consisting of
approximately 11,500 ap-rules per terror group.

Henceforth, we use Heads(�) to denote the set of all annotated formulas appearing
in the head of some rule in �. Given a ground ap-program �, we will use sta(�) (resp.,
act(�)) to denote the set of all state (resp., action) atoms that appear in �.

Example 2.6 (Worlds and States). Coming back to the ap-program in Figure 1, the
following are examples of worlds:

{kidnap(1)}, {kidnap(1), tlethciv(1)}, {}
The following are examples of states:

{forstpolsup(0), elecpol(0)}, {extsup(1), elecpol(1)}, {demorg(1)}.
2.2. Semantics of ap-Programs

We use W to denote the set of all possible worlds, and S to denote the set of all possible
states. It is clear what it means for a state to satisfy the body of a rule [Lloyd 1987].

Definition 2.7 (Satisfaction of a Rule Body). Let � be an ap-program and s a state.
We say that s satisfies the body of a rule F : μ ← B1 ∧ . . . ∧ Bm if and only if
{B1, . . . , BM} ⊆ s.

Similarly, we define what it means for a world to satisfy a ground action formula.
Definition 2.8 (Satisfaction of an Action Formula). Let F be a ground action for-

mula and w a world. We say that w satisfies F if and only if:

— if F ≡ a, for some atom a ∈ BLact , then a ∈ w;
— if F ≡ F1 ∧ F2, for action formulas F1, F2 ∈ formulas(BLact), then w satisfies both F1

and F2;

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:5

— if F ≡ F1 ∨ F2, for action formulas F1, F2 ∈ formulas(BLact), then w satisfies either
F1 or F2;

— if F ≡ ¬F′, for some action formula F′ ∈ formulas(BLact), then w does not satisfy F′.

Finally, we will use the concept of reduction of an ap-program w.r.t. a state.

Definition 2.9 (Reduction of an ap-Program). Let � be an ap-program and s a state.
The reduction of � w.r.t. s, denoted �s, is the set {F : μ ← Body | s satisfies Body and
F : μ ← Body is a ground instance of a rule in �}. Rules in this set are said to be
relevant in state s.

The semantics of ap-programs uses possible worlds in the spirit of Hailperin [1984],
Nilsson [1986], and Fagin et al. [1990]. Given an ap-program � and a state s, we can
define a set LC(�, s) of linear constraints associated with s. Each world wi expressible
in the language Lact has an associated variable pi denoting the probability that it will
actually occur. LC(�, s) consists of the following constraints.

(1) For each Head(r) ∈ �s of the form F : [�, u], LC(�, s) contains the constraint:
� ≤ ∑

wi∈W ∧ wi|=F pi ≤ u.
(2) LC(�, s) contains the constraint

∑
wi∈W pi = 1.

(3) All variables are non-negative.
(4) LC(�, s) contains only the constraints described in (1)–(3).

While [Khuller et al. 2007] provide a more formal model theory for ap-programs, we
merely provide the following definition. �s is consistent iff LC(�, s) is solvable over R.

Definition 2.10 (Entailment of an ap-Formula). Let � be an ap-program, s a state,
and F : [�, u] a ground action formula. �s entails F : [�, u], denoted �s |= F : [�, u] iff
[�′, u′] ⊆ [�, u] where:
�′ = minimize

∑
wi∈W ∧ wi|=F pi subject to LC(�, s).

u′ = maximize
∑

wi∈W ∧ wi|=F pi subject to LC(�, s).

Note that, even though Definition 2.10 defines entailment for reduced programs (i.e.,
w.r.t. a state), the definition contemplates general programs, since we are only inter-
ested in sets of rules for which there exists a state that make them relevant.

The quantity �′ in this definition is the smallest possible probability of F, given that
the facts in � are true. In the same vein, u′ is the largest such probability. If the [�′, u′]
interval is contained in [�, u], then F : [�, u] is definitely entailed by �. We will show
in Example 2.11 an example of both LC(�, s) and entailment of an annotated action
formula.

2.3. A Comparison to Other Probabilistic Approaches

We now compare the power of ap-programs with other probabilistic formalisms. First,
the following example shows that ap-programs are well-suited for representing uncer-
tainty at the level of probability distributions.

Example 2.11 (Multiple Probability Distributions/Entailment). Consider ap-
program � from Figure 1 and state s2 from Figure 2. The set of possible worlds
contains the following elements: w0 = {}, w1 = {kidnap(1)}, w2 = {tlethciv(1)}, and
w3 = {kidnap(1), tlethciv(1)}. Suppose we use pi to denote the variable associated
with the probability of world wi; LC(�, s2) then consists of the following constraints:

0.5 ≤ p1 + p3 ≤ 0.56
0.49 ≤ p2 + p3 ≤ 0.55
p0 + p1 + p2 + p3 = 1

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:6 G. I. Simari et al.

One possible solution to this set of constraints is p0 = 0, p1 = 0.51, p2 = 0.05, and
p3 = 0.44; another possible distribution is p0 = 0.5, p1 = 0, p2 = 0, and p3 = 0.5;
yet another one is p0 = 0, p1 = 0.45, p2 = 0.11, and p3 = 0.44. Finally, formula
kidnap(1) ∧ tlethciv(1) (satisfied only by world w3) is entailed with probability in the
interval [0, 0.55], meaning that one cannot assign a probability greater than 0.55 to
this formula.3

Note that representing a set of distributions is not possible in many other ap-
proaches to probabilistic reasoning, such as Bayesian networks [Pearl 1988], Poole’s
Independent Choice Logic [Poole 1997] and related formalisms such as Poole [1993].
However, this is a key capability for our approach, as we specifically require a for-
malism that is not forced to make assumptions about the probabilistic dependence (or
independence) of the events we are reasoning about.

On the other hand, it is certainly possible to extend our approach in such a way that
the key aspects of Bayesian networks and related formalisms are directly expressible,
as was shown in Ng and Subrahmanian [1993] when probabilistic logic programs were
first introduced. Two key extensions are required.

(1) Allow annotated action atoms in the bodies of rules. Even though this is an exten-
sion w.r.t. the language introduced here, the original formulation [Khuller et al.
2007] already included this capability, and was not introduced here for the sake
of brevity. Essentially, by means of a simple fixpoint operator, it was shown that
an equivalent program without annotated action atoms in the body of rules can be
obtained.

(2) Allow probabilistic annotations to contain variables. The main goal is to allow prob-
abilistic annotations in the head of rules to depend on those in the body.

Extension 2 is by no means a novel idea. The work of Ng and Subrahmanian [1993],
on which ap-programs are directly based, included variables as part of their language.
This extension was not included in the present work (also for reasons of space), but
can clearly be incorporated without great effort.

Once our language incorporates Extensions 1 and 2, it is possible to represent the
following capabilities (the following is based on Ng and Subrahmanian [1993]).

Independence of events. Suppose we wish to represent the fact that any probability
distribution that is a solution to LC(�, s) is such that the probability of action atom
a is independent of that of action atom b. The following rule will add the necessary
constraint to the set of solutions:

a ∧ b : [V1 ∗ V2, V1 ∗ V2] ← a : [V1, V1] , b : [V2, V2]

where V1, V2 are variables that can take values in [0, 1].

Conditional probabilities. We will now see how we can represent the knowledge that
the probability that action atom a is true, given that we know that action atom b is
true, lies in the interval [p1, p2]. As before, we can constrain all solutions to obey this
relationship by adding the rule:

a ∧ b : [p1 ∗ V, p2 ∗ V] ← b : [V, V]

where V is a variable in [0, 1]. Similarly, suppose we represent the conditional proba-
bility of action atom a given b with ab. Then, the following rule constrains the space of
solutions to give ab the correct value:

ab : [V2/V1, V2/V1] ← a ∧ b : [V2, V2] , b : [V1, V1]

3This example shows that, contrary to what one might think, the interval [0, 1] is not necessarily a solution.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:7

Fig. 2. A small set of possible states.

where V1, V2 are variables in (0, 1] and [0, 1], respectively.
Therefore, even though it is a well known fact that Bayesian networks are capable

of representing any single probability distribution, we have shown here that: (1) ap-
programs are especially useful in cases in which we wish to express uncertainty about
the probability distribution in question, and (2) ap-programs are capable of represent-
ing the basic constructs used in this family of formalisms, and therefore no expressivity
is lost.

3. BASIC ABDUCTIVE QUERIES TO PROBABILISTIC LOGIC PROGRAMS

Suppose s is a (current) state, G is a goal (an action formula), and [�, u] ⊆ [0, 1] is a
probability interval. The BAQA problem tries to find a new state s′ such that �s′ entails
G : [�, u]. However, s′ must be reachable from s. For this, we assume the existence of
a reachability predicate reach specifying direct reachability from one state to another.
reach∗ is the reflexive transitive closure of reach and unReach is its complement.

For the purposes of the presentation of the theoretical analysis of the problem in
this section, we will assume that reach is provided and can be queried in polynomial
time. However, in order to develop practical algorithms, in Section 3.1.2 we will in-
vestigate one way in which reach can be specified (by means of so-called reachability
constraints), as well as ways in which knowledge of action effects and preconditions
can be encoded into this predicate4.

Example 3.1 (Reachability between States). Suppose, for simplicity, that the only
state predicate symbols are those that appear in the rules of Figure 1, and consider
the set of states in Figure 2. Then, some examples of reachability are the following:
reach(s1, s2), reach(s1, s3), reach(s2, s1), reach(s4, s1), ¬reach(s2, s5), and ¬reach(s3, s5).
Note that, if state s5 is reachable, then the ap-program is inconsistent, since both
rules 1 and 2 are relevant in that state.

We can now state the BAQA problem formally.

BAQA Problem
Input: An ap-program �, a state s, a reachability predicate reach and a ground ap-
formula G : [�, u].
Output: “Yes” if there exists a state s′ such that reach∗

(s, s′) and �s′ |= G : [�, u], and
“No” otherwise.

Example 3.2 (Solution to BAQA). Consider once again the program in the running
example and the set of states from Figure 2. If the goal is kidnap(1) : [0, 0.6] (we want
the probability of Hezbollah using kidnappings to be at most 0.6) and the current state
is s4, then the problem is solvable because Example 3.1 shows that state s1 can be
reached from s4, and �s1 |= kidnap(1) : [0, 0.6].

4Furthermore, note that there is an intrinsic relationship between state reachability and consistency of
ap-programs; this is because states for which the relevant subprogram is inconsistent should never be
reachable.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:8 G. I. Simari et al.

There may be costs associated with transforming the current state s into another
state s′, and also an associated probability of success of this transformation (e.g., the
fact that we may try to reduce foreign state political support for Hezbollah may only
succeed with some probability). We will formulate this problem formally and present
algorithms for solving it in Section 4. The following proposition shows the intractability
of BAQA in the general case.

PROPOSITION 3.3. The BAQA problem is EXPTIME-complete.

PROOF. Suppose we are given an instance of BAQA consisting of an ap-program �,
a goal G : [�G, uG], a reachability predicate reach, and an initial state s0. We first point
out that any such instance of BAQA can be solved in time exponential in the size of
the input by straightforward search through the space of all possible states, testing
all possible subsets of �, and solving the linear programs associated with each one of
these possible subsets in order to test for entailment.

In order to show completeness, let P be an arbitrary problem in EXPTIME and TMP
be a deterministic Turing machine that decides P for any input x in time in O(2|x|). We
will provide a polynomial-time transformation from a description �TMP of TMP and x
to an instance of BAQA such that TMP accepts x if and only if the associated BAQA in-
stance returns true. We start by describing a state space S that mimics the space of all
possible configurations of TMP over x, allowing for two special states s0 and s∗. Since
the size of S is clearly in O(2|�TMP|), we can encode it by means of a set Lsta of size in
O(|�TMP|). Now, we will specify the reach predicate by making reach(s0, s1) true for
the state s1 corresponding to the initial configuration of TMP over x, and reach(sf , s∗)
true for any state sf that corresponds to an accepting configuration. Finally, we will
make reach(si, sj) true for any states si, sj ∈ S such that the transition rules in �TMP
state that the configuration associated with sj can be reached directly from the config-
uration associated with si; reach(si, sj) is false for all pairs of states si, sj that do not fall
under any of the preceding cases. Finally, let � consist of the single rule F : [ε, 1] ← s∗,
where F is an arbitrary satisfiable formula over an arbitrary set Lact and ε ∈ (0, 1], s0
be the initial state, and let the goal be F : [ε, 1].

Given this construction, it is clear that the only way in which the BAQA instance can
be solvable is if s∗ is reachable from s0, and this is possible if and only if TMP accepts
x. Since the transformation was done in polynomial time, the statement follows.

Moreover, this problem is likely to be intractable even under simplifying assump-
tions, as shown in the following two results. First, we reproduce a lemma (first in-
troduced in [Chvtal 1983] and used in [Fagin et al. 1990]) that states that we can be
guaranteed a solution to a linear program where only a number of the variables linear
in the number of constraints are set to a nonzero value; this lemma will be used to
prove Proposition 3.6.

LEMMA 3.4 ([CHVTAL 1983; FAGIN ET AL. 1990]). If a system of m linear equali-
ties and/or inequalities has a nonnegative solution, then it has a nonnegative solution
with at most m positive variables.

We now present our results on the complexity of BAQA under simplifying assumptions.

COROLLARY 3.5. Let Lact be such that |Lact| ≤ c′ for some constant c′ ∈ N; the BAQA
problem under this assumption is EXPTIME-complete.

PROOF. The proof is immediate by observing that the proof of Proposition 3.3 only
makes use of a constant-sized |Lact|.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:9

PROPOSITION 3.6. Let Lsta be such that |Lsta| ≤ c′ for some constant c′ ∈ N; the
BAQA problem under this assumption is NP-complete.

PROOF. Membership in NP can be shown by applying Lemma 3.4. For any “yes”
instance of the problem, the witness will consist of a proof of reachability (of polynomial
size given the hypothesis |Lsta| ≤ c′), a set of rules �′ ⊆ �, and an assignment of
nonzero values to a polynomial number of variables in the associated linear program.
This witness can clearly be verified in polynomial time.

We will prove NP-hardness by reduction from SAT. Let F be a boolean formula that is
the input to the SAT instance; we then need to obtain, in polynomial time, an instance
of BAQA such that it has a solution if and only if F is satisfiable. Let � be an ap-
program consisting of a single rule F : [ε, 1] ← s, for some ε > 0; furthermore, let s be
the initial state and F : [ε, 1] be the goal formula.

If F is satisfiable, clearly �s |= F : [ε, 1] and, since the initial state makes the only
rule in � relevant, the problem has a solution. On the other hand, if F is not satisfiable,
then �s will only entail F : [0, 1], and therefore the problem will not be solvable.

These results reveal that the complexity of BAQA is caused by two factors. Specifi-
cally, we need to address the following two problems.

— (P1). Find a subprogram �′ of � such that when the body of all rules in that sub-
program is deleted, the resulting subprogram entails the goal.

— (P2). Decide if there exists a state s′ such that �′ = �s and s is reachable from the
initial state.

In the following, we will present algorithms and techniques for addressing these
problems.

3.1. Algorithms for BAQA

In this section, we leverage this intuition to first develop a naı̈ve algorithm for BAQA,
then develop a more efficient algorithm for BAQA under the assumption that all goals
are of the form F : [0, u] (ensure that F’s probability is less than or equal to u) or
F : [�, 1] (ensure that F’s probability is at least �). Finally, we develop a heuristic
algorithm.

Naı̈ve Algorithm for BAQA. Before presenting a simple approach to solving BAQA
exactly, we first define the concept of a subprogram graph.

Definition 3.7 (Subprogram Reachability Graph). Let � be a ground ap-program
and reach be a reachability predicate. The subprogram graph is defined as a pair
G =

(
2Heads(�), E

)
, where (�1, �2) ∈ E if and only if there exist states s1, s2 such

that �1 (resp. �2) is the reduction of a subprogram relevant in s1 (resp. s2), and
reach∗

(s1, s2).

Figure 3 uses this graph to present a general template for solving BAQA. For instance,
the subroutine isSolution called in line 3 simply checks if the ap-program that is being
considered satisfies the goal; this check will depend on the specific problem that is
being solved. The other generic subroutine is getNextSubprogram, called in line 5.
This function is based on a traversal of the graph defined before, which can of course be
implemented in a wide variety of ways. This algorithm is clearly sound and complete.

3.1.1. Answering Threshold Goals. A threshold goal is an annotated action formula of
the form F : [0, u] or F : [�, 1]. We now devise a better algorithm for BAQA when only
threshold goals are considered. This is a reasonable approach, since threshold goals
can be used to require that certain formulas (actions) should only be entailed with

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:10 G. I. Simari et al.

Fig. 3. A naı̈ve algorithm for solving BAQA based on the traversal of the relevant subprogram reachability
graph induced by reach.

a certain maximum probability (upper bound) or should be entailed with at least a
certain minimum probability (lower bound). We start by inducing equivalence classes
on subprograms that limit the search space, helping address problem (P1).

Definition 3.8 (Equivalence of ap-Programs). Let � be a ground ap-program and F
be a ground action formula. We say that subprograms �1, �2 ⊆ � are equivalent given
F : [�, u], written �1 ∼F: [�,u] �2, iff �1 |= F : [�, u] ⇔ �2 |= F : [�, u]. Furthermore,
states s1 and s2 are equivalent given F : [�, u], written s1 ∼F:[�,u] s2, iff reach(s1, s2),
reach(s2, s1), and �s1 ∼F:[�,u] �s2 .

Intuitively, subprograms �1, �2 are equivalent w.r.t. F : [�, u] whenever they both en-
tail (or do not entail) the annotated formula in question. For clarity, when the proba-
bility interval is evident from context, we will omit it from the notation.

Example 3.9 (Equivalence of ap-Programs). Let � be the ap-program from
Figure 1, formula F = kidnap(1); [0, 0.56], �1 = {r1}, �2 = {r2, r3} �3 = {r1, r4}
�4 = {r1, r5}, and �5 = {r2, r3, r5}. Here, �1 ∼F �3, �1 ∼F �4, �3 ∼F �4, and
�2 ∼F �5. For instance, we can see that �1 ∼F �3 because the probability with which
kidnap(1) is entailed is given by rule r1; rule r4 is immaterial in this case. Clearly,
�1 �∼F �2 since F is entailed with different probabilities in each case.

Next, consider the states from Figure 2 and the reachability predicate from
Example 3.1. Since we have that reach(s1, s2), reach(s2, s1), �1 is relevant in s1, and
�3 is relevant in s2, we can conclude that s1 ∼F s2.

Relation ∼, both between states and between subprograms, is clearly an equivalence
relation. The following lemma identifies sufficient conditions for probabilistic entail-
ment of threshold goals.

LEMMA 3.10 (SUFFICIENT CONDITIONS FOR ENTAILMENT). Let � be a consistent
ap-program and G : [�G, uG] be a threshold goal. If there exists a rule r ∈ � such that
Head(r) = F : [�F, uF] and: either (1) if uG = 1, F |= G, and �G ≤ �F; or (2) if �G = 0,
G |= F, and uG ≥ uF; then, � |= G : [�G, uG].

In the following, we will refer to the rules characterized by Lemma 3.10 as entailing
rules for G. Note that recognizing entailing rules as such depends on the way they
are written; even though an annotated formula F : [�, u] is semantically equivalent to
¬F : [1 − u, 1 − �], one such rule may be entailing while the other is not, leading the
application of Lemma 3.10 to fail in this case.

The following corollary to Lemma 3.10 specifies sufficient conditions for the identifi-
cation of equivalence classes.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:11

Fig. 4. An algorithm to solve BAQA assuming a threshold goal.

COROLLARY 3.11 (SUFFICIENT CONDITION FOR EQUIVALENCE OF ap-PROGRAMS).
Let � be an ap-program and G be an annotated action formula. Consider two consistent
subprograms �′, �′′ ⊆ � such that �′ = �′

a ∪ �′
p (resp., �′′ = �′′

a ∪ �′′
p), where �′

a and
�′′

a are sets of entailing rules for G. Then, �′ ∼G �′′.

The algorithm in Figure 4 first tries to leverage Lemma 3.10 and Corollary 3.11,
and only proceeds if this is not possible. The way in which the algorithm partitions
� is partly based on Corollary 3.11, and the algorithm then applies a heuristic way
of traversing possible subsets of � based on favoring subsets with rules whose heads
share models with the goal (and thus may have a higher chance of satisfying it).
The following result proves that this algorithm correctly computes solutions to our
problem.

PROPOSITION 3.12 (CORRECTNESS AND COMPLEXITY OF SIMPLEANNBAQA).
Given an ap-program �, a state s ∈ S, and an annotated action formula G : [�, u],
Algorithm simpleAnnBAQA correctly computes a solution to BAQA. Its worst case
running time is in O

(
2|�| + 2|Lsta| + 2|Lact|).

Note that if we assume that the number of atoms that can appear in action formulas
in the heads of rules is bounded by a constant, then the term exponential in |Lact| will

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:12 G. I. Simari et al.

not be present in the running time of the algorithm. We now present an example of
how this algorithm works.

Example 3.13 (simpleAnnBAQA over the Running Example). Suppose � is the ap-
program of Figure 1, the goal is kidnap(1) : [0, 0.6] (abbreviated with G : [0, 0.6] from
now on) and the state is that of Example 3.2,

scurr = {forstpolsup(1), intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)};
note that �scurr = {r2, r5} and that clearly �scurr �|= kidnap(1) : [0, 0.6]. The first step
checks for the applicability of Lemma 3.10; clearly rule r1 satisfies the conditions and
we only need to verify that some subprogram containing it is reachable. Assuming the
same reachability predicate outlined in Example 3.1,

s1 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)}
is reachable from scurr; this corresponds to choosing subprogram �′ = {r1}. The only
other possibilities are to make both r1 and one of r4 or r5 relevant. Finally, we illustrate
Step 2 with this setup; in this case, the identification of active rules is simple, since all
the heads of rules in � are atomic – therefore passive(�scurr , G : [0, 0.6]) = ∅, and the
set of active rules contains all the rules in �.

In the next section we will explore ways in which reach can be expressed, and how
different restrictions on this predicate impact the difficulty of solving BAQA.

3.1.2. An Improved BAQA Algorithm. Up to now, we have been assuming that reachability
(or unreachability) was simply determined by querying a predicate; we now explore
how we can leverage a syntactic specification of this predicate, showing that in this
case we can come up with some good heuristics to solve BAQA.

Definition 3.14 (Reachability Constraint). Let F and G be first-order formulas over
Lsta and Lvar, connectives ∧, ∨, and ¬, such that the set of variables over F is equal
to those over G, and all variables are assumed to be universally quantified with scope
over both F and G. A reachability constraint is of the form F �↪→ G; we call F the
antecedent and G the consequent of the constraint, and its semantics is:

unReach(s1, s2) ⇔ s1 |= F and s2 |= G,

where s1 and s2 are states in S.

Reachability constraints simply state that if the first formula is satisfied in a certain
state, then no states that satisfy the second formula are reachable from it. We now
present an example of a set of reachability constraints.

Example 3.15 (Reachability Constraints). Consider again the setting and ap-
program from Figure 1. The following are examples of reachability constraints:

rc1 : forstpolsup(1) �↪→ intersev1(c)
rc2 : extsup(1) �↪→ intersev1(c)
rc3 : (intersev1(c) ∨ intersev2(c)) ∧ demorg(0) �↪→ demorg(1)

To illustrate how this kind of constraint can be used to represent action preconditions,
suppose we wish to represent the fact that action kidnap(1) cannot be taken whenever
demorg(1) is true. This can be represented with the constraint:

demorg(1) �↪→ kidnap performed(1),

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:13

Fig. 5. A heuristic algorithm based on Lemma 3.10 to solve BAQA assuming that the goal is an ap-formula
of the form either G : [0, u] or G : [�, 1] and that the state reachability predicate reach is specified as a set
RC of reachability constraints.

where kidnap performed(1) is an environment atom expressing that action kidnap(1)

was taken.5 Knowledge of action effects can clearly be represented with constraints
built in a similar manner.

Algorithm simpleAnnBAQA-Heur-RC (Figure 5) is optimistic and assumes that
Lemma 3.10 will yield at least one entailing formula for the goal; furthermore, it
takes advantage of the structure added by the presence of reachability constraints.
The algorithm starts out by executing the steps of simpleAnnBAQA that compute
the sets active(�, G : [�G, uG]), passive(�, G : [�G, uG]), candAct(�, G : [�G, uG]),
conf(�, G : [�G, uG]), and inc(�). It then builds formulas generated by reachability
constraints that solution states must satisfy (under the optimistic assumption); the
algorithm uses a subroutine formula(s) which returns a formula that is a conjunction
of all the atoms in state s and the negations of those not in s. In Step 5, the formula
describes the fact that at least one of the states that make relevant entailing rules (as
described in Algorithm simpleAnnBAQA) must be part of the solution; similarly, Step 6
builds a formula ensuring that none of the conflicting active rules can be relevant if
the problem is to have a solution. Finally, Step 7 describes the constraints associated
with making relevant rules that are probabilistically inconsistent. Noticeably absent
are the “passive” rules from the previous algorithm; such rules impose no further con-
straints on the solution space under the assumptions being made by the algorithm.
The last two steps put subformulas together into a conjunction of constraints, and the
algorithm must decide if there exist any states that model formula goalState and are
eventually reachable from s.

Deciding eventual reachability, as we have seen, is one of the main problems that
we set out to solve as part of BAQA. We therefore propose two possible implementa-
tions of this subroutine: (i) a SAT-based algorithm, presented in Figure 6, and (ii) one
based on a hill climbing strategy, whose pseudocode can be found in Figure 7. The SAT-
based algorithm is simple: if the current state does not satisfy goalState, it starts by
initializing formula Reachable, which will be used to represent the set of eventually

5This sort of atom is only necessary if we wish to encode knowledge of action effects and preconditions.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:14 G. I. Simari et al.

Fig. 6. An algorithm to decide reachability from a state s to any of the states that satisfy the formula
goalState, where reachability is expressed as a set RC of reachability constraints. This version is based on
deriving a formula that describes the set of all possible states eventually reachable from the initial one.

reachable states at each step. The initial formula describes state s, and the algorithm
then proceeds to select all the constraints whose antecedents are entailed by Reach-
able. Once we have this set, Reachable is updated to the conjunction of the negations
of all the consequents of constraints in the set. We are done if either Reachable at this
point models goalState, or the old version of Reachable is modeled by the new one, that
is, no new reachable states were discovered.

PROPOSITION 3.16. Let s1 be a state, goalState be a formula over states, and RC be
a set of reachability constraints. Algorithm decideReachability-SAT(s, goalState, RC)
correctly decides if there exists a state s′ such that s′ |= goalState and reach∗

(s, s′).

The following is an example of how decideReachability-SAT works.

Example 3.17. Consider the ap-program from Figure 1, along with constraint rc1
from Example 3.15. As we saw in Example 3.13, if the goal is kidnap(1) : [0, 0.6] and
the current state is:

s0 = {forstpolsup(1), intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)};
then either {r1} or {r1, r4} should be made relevant, which yields the following goalState
formula:

forstpolsup(0) ∧ intersev1(c) ∧ ¬
⎛
⎝ ∨

i=2,3,5

Body(ri)

⎞
⎠ .

Reachable starts out with formula(s0) and, as Reachable |= forstpolsup(1), it gets
updated to the following:

¬intersev1(c),
which is mutually unsatisfiable with goalState. In the next iteration, however, as
Reachable does not entail the antecedent of rc1, it gets updated to �, which means
that there are no constraints regarding the states that can be reached, and therefore
the algorithm will answer true.

Algorithm decideReachability-HillClimb takes a different approach. Rather than
characterize the states that are eventually reachable from s and seeing if this set over-
laps with the models of goalState, it simply finds a single model g of goalState and
computes the atoms that are “different” between s and g (i.e., atoms that are true in s

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:15

Fig. 7. An algorithm to decide reachability from a state s to any of the states that satisfy the formula
goalState, where reachability is expressed as a set RC of reachability constraints. This version is based on
selecting a single goal state that satisfies goalState and performing a hill climb by selecting atoms that must
be made true or false in order to reach it from the current one.

and false in g and vice versa).6 The algorithm then begins the hill climbing strategy by
selecting atoms from these sets of differences to change in the current state, checking
that the new state is in fact reachable from the old one given the constraints in RC.
We are done whenever we find that such a change is impossible, or the change led to
a state that satisfies goalState. It should be noted that this algorithm is vulnerable
to bad choices regarding the changes it makes to intermediate states, as well as the
fact that it is impossible for it to change atoms that are not part of diff+ or diff−. It
is therefore a fast, but incomplete, heuristic algorithm. It is, however, sound, as the
following proposition proves.

PROPOSITION 3.18. Let s be a state, goalState be a formula over states, and
RC be a set of reachability constraints. Algorithm decideReachability-HillClimb
(s, goalState, RC) is sound, that is, if it returns true then there exists a state s′ such
that s′ |= goalState and reach∗

(s, s′).

The following is an example of how decideReachability-HillClimb works.

Example 3.19. Consider the same setup from Example 3.17. The first step in the al-
gorithm is to obtain a state g that satisfies goalState. Suppose we choose the following
state:

g = {forstpolsup(0), intersev1(c), intersev2(1), elecpol(c), extsup(0), demorg(1)}
Suppose the current state is:

s0 = {forstpolsup(1), intersev1(c), intersev2(1), elecpol(c), extsup(1), demorg(1)}

6Note that focusing on a single state also allows it to be used in conjunction with the original sim-
pleAnnBAQA algorithm, as it does not rely on a general reachability formula that can only be obtained
by relying on Lemma 3.10.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:16 G. I. Simari et al.

Fig. 8. A summary of the algorithms for BAQA.

The two sets computed at the beginning of the while loop are:

diff+ = {forstpolsup(0), extsup(0)}

diff− = {forstpolsup(1), extsup(1)}
Suppose the algorithm chooses to make forstpolsup(1) false from diff− and
forstpolsup(0) true from diff+ in the next step. This, however, does not satisfy Curr,
which at this point is ¬intersev1(c). This is a case in which the algorithm will re-
turn false when there is actually a solution to the problem; unfortunately, as atom
intersev1(c) is not part of diff+ ∪ diff−, it can never change in currState and thus
Curr can never be satisfied.

Example 3.20. Consider now the following ap-program:
p ∧ q : [0.3, 0.5] ← a ∧ b.
p : [0.3, 0.8] ← a ∧ d.
p : [0.1, 0.2] ← a ∧ b ∧ c.
q : [0.5, 0.9] ← b.
s ∧ ¬p : [0.8, 0.95] ← b ∧ d.

where Lact = {p, q} and Lsta = {a, b, c, d}. Let the set of reachability constraints be:

{c1 : d �↪→ a ∧ b, c2 : b �↪→ a, c3 : a �↪→ b, c4 : ¬c �↪→ d}.
Suppose the goalState formula corresponding to goal p : [0.25, 1] is:

(a ∧ b) ∧ ¬(a ∧ b ∧ c) ∧ (a ∧ d),

and suppose the current state is s0 = {¬a, ¬b, c, d}. Suppose the hill climbing algorithm
chooses state g = {a, b, ¬c, ¬d} as the goal. Then, diff+ = {a, b} and diff− = {c, d}. The
only antecedent that is satisfied in the current state is that of c1, and therefore we can
access any state that does not satisfy its consequent, that is, a ∧ b. Suppose the algo-
rithm chooses s1 = {¬a, ¬b, ¬c, d}; now, the only antecedent that is satisfied is that of
c4, and therefore we must make d false in the next state. Let s2 = {¬a, ¬b, ¬c, ¬d}. Now,
since there is nothing stopping a transition to states in which a and b are both true,
we can reach g and we are done. Note that this step could have been taken from s1 di-
rectly, but the algorithm does not necessarily make the smallest number of transitions.
Figure 8 provides a summary of the algorithms discussed in this section, including
brief comments based on the results presented earlier.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:17

4. COST-BASED ABDUCTIVE QUERY ANSWERING

We now expand on the basic query answering problem we have described and assume
that there are costs associated with transforming the current state into another state,
and also an associated probability of success of this transformation; for instance, the
fact that we may try to reduce foreign state political support for Hezbollah may only
succeed with some probability. To model this, we use three functions:

Definition 4.1. A transition function is any function T : S × S →[0, 1], and a cost
function is any function cost : S →[0, 1]. A transition cost function, defined w.r.t. a
transition function T and some cost function cost, is a function costT : S × S →[0, ∞),
with costT(s, s′) = cost(s′)

T(s,s′) whenever T(s, s′) �= 0, and ∞ otherwise7.

The rationale behind this definition is that transitions with high probability of occur-
ring are considered to be “easy,” and therefore have a low associated cost.

Example 4.2 (Transition Probabilities). Suppose the only state predicate symbols
are those that appear in the rules of Figure 1, and consider the set of states in Figure 2.
An example of a transition function is: T(s1, s2) = 0.93, T(s1, s3) = 0.68, T(s2, s1) =
0.31, T(s4, s1) = 1, T(s2, s5) = 0, T(s3, s5) = 0, and T(si, sj) = 0 for any pair si, sj
other than the ones we have considered. Note that, if state s5 is reachable, then the
ap-program is inconsistent, since both rules 1 and 2 are relevant in that state.

Function costT describes reachability between any pair of states – a cost of ∞ rep-
resents an impossible transition. The cost of transforming a state s0 into state sn by
intermediate transformations through the sequence of states seq = 〈s0, s1, . . . , sn〉 can
be defined in the following manner:

cost∗seq(s0, sn) = e
∑

0≤i<n,si∈seq costT(si,si+1). (1)

Note that Equation (1) is only one possible way of computing the cost of transitions
through a sequence; the only hard requirement is that the function must be monotonic
(the costs could, for instance, be additive instead of multiplicative). One way in which
cost functions can be specified is in terms of reward functions.

Definition 4.3 (Reward Functions). An action reward function is a partial function
R : APF →[0, 1]. An action reward function is finite if dom(R) is finite.

Let R be a finite reward function and � be an ap-program. An entailment-based
reward function for � and R is a function E�,R : S →[0, ∞), defined as:

E�,R(s) =
∑

F: [�,u]∈dom(R)∧�s|=F: [�,u]

R
(
F : [�, u]

)
(2)

Reward functions are used to represent how desirable it is, from the reasoning agent’s
point of view, for a given annotated action formula to be entailed in a given state
by the model being used. In this article, we will assume that all reward functions
are finite. We use this notion of reward to define a natural canonical cost function as
cost◦(s) = 1

E�,R(s) when E�,R(s) �= 0, and 1 otherwise, for each state s. In the rest of this
paper, we assume that all transition cost functions are defined in terms of a canonical
cost function.

Example 4.4. An example of an entailment-based reward function is as follows.
Consider state s2 from Figure 2, and annotated formulas F1 = kidnap(1)∧tlethciv(1) :

7We assume that ∞ represents a value for which, in finite-precision arithmetic, 1
∞ = 0 and x∞ = ∞ when

x > 1. The IEEE 754 floating point standard satisfies these rules.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:18 G. I. Simari et al.

[0, 0.6], F2 = kidnap(1) : [0, 0.05], and F3 = tlethciv(1) : [0, 0.5]. Suppose we have
action reward function R such that R(F1) = 0.2, R(F2) = 0.54, and R(F3) = 0.14.
Now, considering that �s2 |= F1, �s2 �|= F2, and �s2 |= F3, we have that, according to
Equation (2) in Definition 4.3, E�,R(s2) = 0.2 + 0.14, 1 = 0.34. Assuming T(s1, s2) =
0.93 as in Example 4.2, we have costT(s1, s2) = 0.34

0.93 ≈ 0.365.

Definition 4.5. A cost based query is a 4-tuple 〈G : [�, u] , s, costT, k〉, where G : [�, u]
is an ap-formula, s ∈ S, costT is a cost function, and k ∈ R+ ∪ {0}.

CBQA Problem. Given an ap-program � and a cost-based query 〈G : [�, u] , s,
costT, k〉, return “Yes” if and only if there exists a state s′ and sequence of states
seq = 〈s, s1, . . . , s′〉 such that cost∗seq(s, s′) ≤ k, and �s′ |= G : [�, u]; the answer is “No”
otherwise.

The main difference between the BAQA problem presented before and CBQA is that
in BAQA there is no notion of cost, and we are only interested in the existence of some
sequence of states leading to a state that entails the ap-formula.

Example 4.6. Consider the program in the running example and the set of states
from Figure 2. Suppose the goal is kidnap(1) : [0, 0.6] (we want the probability of
Hezbollah using kidnappings to be at most 0.6), the current state is s4, and k = 3.
Suppose we have a reward function E�,R such that E�,R(s1) = 0.5, E�,R(s2) = 0.15,
E�,R(s3) = 0.5, E�,R(s4) = 0.1, E�,R(s5) = 0, and E�,R(si) = 0 for all other si ∈ S. Fi-
nally, for the sake of simplicity, suppose transition function T states that all transitions
have probability 1.

The states that make relevant a subprogram that entails the goal are: s1, s2, s3, and
s5. The objective is to find a finite sequence of states starting at s4 and finishing in any
other state such that the total cost of the sequence is less than 3 (recall that cost is
defined costT(s, s′) = cost◦(s′)/T(s, s′)). We can easily see that directly moving to either
state s1 or s3 satisfies these conditions, with a cost of 2; moving to s2 or s5 does not,
since the cost would be ≈ 6.67 and ∞, respectively.

The following proposition is a direct consequence of Proposition 3.3, which stated
that the BAQA problem is EXPTIME-complete.

PROPOSITION 4.7. CBQA is EXPTIME-complete.

PROOF. Direct consequence of Proposition 3.3, by observing that BAQA is a special
case of CBQA where the transition function T is such that T(si, sj) = 1 for any si, sj ∈ S,
the reward function is such that E�,R(s) = 1 for all s ∈ S, and k = ∞ (i.e., a high enough
value).

It follows directly from Corollary 3.5 and Proposition 3.6 that CBQA is EXPTIME-
complete and NP-complete whenever the cardinality of the set of ground action atoms
is bounded by a constant, and the cardinality of the set of ground state atoms is
bounded by a constant, respectively. Problems P1 and P2 also apply to CBQA, the
only difference being that in P2 we must take the cost budget (and therefore also the
transition probabilities) into account.

The following sections investigate algorithms for CBQA when the cost function is
defined in terms of entailment-based reward functions. We begin by presenting an
exact algorithm and then go on to investigate a more tractable approach to finding
solutions, albeit not optimal ones.

4.1. An Exact Algorithm for CBQA

We show that any CBQA problem can be mapped to a Markov Decision Process
[Bellman 1957; Puterman 1994] problem. An instance of an MDP consists of: a finite

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:19

set S of environment states; a finite set A of actions; a transition function T : S × A →
�(S) specifying the probability of arriving at every possible state given that a certain
action is taken in a given state; and a reward function R : S × A → R specifying the
expected immediate reward gained by taking an action in a state. The objective is to
compute a policy π : S → A specifying what action should be taken in each state – the
policy should be optimal w.r.t. the expected utility obtained from executing it.

Obtaining an MDP from the Specification of a CBQA Instance. We show how any
instance of a CBQA problem can be mapped to an MDP in such a way that an optimal
policy for this MDP corresponds to solutions to the original CBQA problem.

State Space: The set SMDP of MDP states corresponds directly to the set S.

Actions: The set AMDP of possible actions in the MDP domain corresponds to the set of
all possible attempts at changing the current state.8 We can think of the set of actions
as containing one action per state in s ∈ S, which represents the change from the
current state to s. We will therefore say that action a specifying that the state will be
changed to s is congruent with s, denoted a ∼= s.

Transition Function: The transition function TMDP for the MDP can be directly ob-
tained from the transition function T in the CBQA instance. Formally, let s, s′ ∈ SMDP
and a ∈ AMDP; we define:

TMDP(s, a, s′) =
{

0 if a �∼= s′,
T(s, s′) otherwise;

(3)

TMDP(s, a, s) = 1 − T(s, a, s′)for a ∼= s′; (4)

the last case represents the fact that when actions fail to have the desired effect, the
current state is unchanged.

Reward Function: The reward function of the MDP, which describes the reward directly
obtained from performing action a ∈ A in state s ∈ S, can also be directly obtained from
the CBQA instance. Let s ∈ SMDP, a ∈ AMDP, � be an ap-program, G : [�, u] be the goal,
and E�,R be an entailment-based reward function:

R(s, a) =
{−1 ∗ costT(s, s′) for state s′ ∈ S such that a ∼= s′,

1 for states s′ ∈ S such that �s′ |= G : [�, u].
(5)

To conclude, we present the following results. The first states that given an instance
of CBQA, our proposed translation into an MDP is such that an optimal policy under
Maximum Expected Utility (MEU) for such an MDP expresses a solution for the orig-
inal instance. In the following, we say that a sequence of states 〈s0, s1, . . . , sk〉 is the
result of following a policy π if π(si) = ai+1, where 0 ≤ i < k and ai+1 ∼= si+1.

PROPOSITION 4.8. Let O = (
�,S, s0, G : [�, u] , cost, T, E�,R, k

)
be an instance of a

CBQA problem that has a solution (output “Yes”), and M = (SMDP, AMDP, TMDP, RMDP)
be its corresponding translation into an MDP. If π is a policy for M that is optimal w.r.t.
the MEU criterion, then following π starting at state s0 ∈ SMDP yields a sequence of
states that satisfies the conditions for a solution to O.

8Note that here actions refer to the point of view of the reasoning agent, who desires to act over the envi-
ronment in order to influence the agent being modeled by the ap-program.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:20 G. I. Simari et al.

PROOF. By hypothesis we have that π is MEU-optimal, which means that

π(s) = arg max
a

⎛
⎝RMDP(s, a) + max

a′

⎛
⎝∑

s′∈S

TMDP(s, a, s′) · Q(s′, a′)

⎞
⎠

⎞
⎠ (6)

where Q is the action utility function defined as usual:

Q(s, a) = RMDP(s, a) + max
a′

⎛
⎝∑

s′∈S

TMDP(s, a, s′) · Q(s′, a′)

⎞
⎠

By hypothesis, we have that the answer to instance O is “Yes”, meaning that there
exists a sequence seq = 〈s0, . . . , sn〉 such that cost∗seq(s0, sn) ≤ k. We will prove, by
induction on the length of seq, that the theorem holds.

Base case: For |seq| = 2, π(s0) must correspond to an action that takes us directly to
state s′ satisfying the entailment condition. Furthermore, by definition of MEU policy,
it must be the action that maximizes the reward function defined in Equation (5). By
hypothesis, it must be the case that cost∗seq(s0, s′) ≤ k; the theorem therefore holds.

Inductive step: Assume that the theorem holds whenever solution seq is such that
|seq| = k, for some k ∈ N, k > 2; we must then prove that it also holds whenever
|seq| = k + 1. Consider the set S′

0 comprised of states s′
0 such that T(s0, s′

0) �= 0 and
cost∗seq(s0, s′

0) ≤ k. Then, since by hypothesis we know that there exists a solution to O
of length k + 1, there must exist a solution of length k to some instance

O′ =
(
�,S − {s0}, s′

0, G : [�, u] , cost, T, E�,R, k − cost∗seq(s0, s′
0)

)
,

for some s′
0 ∈ S′

0. By the inductive hypothesis, the theorem is satisfied for O′, meaning
that the MEU optimal policy π for O is defined for all states in S −{s0}. Now, π(s0) will
correspond to the action with the highest reward; clearly, the action that corresponds
to state s′

0 from O′ satisfies this property.

Second, we analyze the computational cost of taking this approach. As there are
numerous algorithms to solve MDPs, we only analyze the size of the MDP resulting
from the translation of an instance of CBQA. The well-known Value Iteration algo-
rithm [Bellman 1957] iterates over the entire state space a number of times that is
polynomial in |S|, |A|, β, and B, where β is the discount factor and B is an upper bound
on the number of bits that are needed to represent any numerator or denominator of
β [Littman 1996]. Now, each iteration takes time in O(|A| · |S|2), which is equivalent to
O(|S|3) since |A| = |S|; this means that only for very small instances will solving the
corresponding MDP be feasible.

As can be seen from the given mapping, the key point in which our problem differs
from approaches like planning under uncertainty is that finding a sequence of states
that is a solution to CBQA involves executing actions in parallel which, among other
things, means that the number of possible actions that can be considered in a given
state is very large. This makes planning approaches infeasible since their computa-
tional cost is intimately tied to the number of possible actions in the domain (generally
assumed to be fixed at a relatively small number). In the case of MDPs, even though
state aggregation techniques have been investigated to keep the number of states be-
ing considered manageable [Boutilier et al. 2000; Tsitsiklis and van Roy 1996], similar
techniques for action aggregation have not been developed.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:21

Fig. 9. An algorithm for CBQA based on probability density estimation.

4.2. A Heuristic Algorithm Based on Iterative Sampling

Given the exponential search space, we would like to find a tractable heuristic ap-
proach. We now show how this can be done by developing an algorithm in the class
of iterated density estimation algorithms (IDEAs) [de Bonet et al. 1996; Pelikan et al.
2002]. The main idea behind these algorithms is to improve on other approaches such
as Hill Climbing, Simulated Annealing, and Genetic Algorithms by maintaining a
probabilistic model characterizing the best solutions found so far. An iteration then
proceeds by (1) generating new candidate solutions using the current model, (2) sin-
gling out the best of the new samples, and (3) updating the model with the samples
from Step 2. One of the main advantages of these algorithms over classical approaches
is that the probabilistic model, a “byproduct” of the effort to find an optimum, contains
a wealth of information about the problem at hand.

Algorithm DE CBQA (Figure 9) follows this approach to finding a solution to our
problem. The algorithm begins by identifying certain goal states, which are states s′
such that �s′ |= G : [�, u]; these states are pivotal, since any sequence of states from s0
to a goal state is a candidate solution. The algorithms in Section 3 can be used to com-
pute a set of goal states. Continuing with the preparation phase, the algorithm then
tests how good the direct transitions from the initial state s0 to each of the goal states
is; φ∗ now represents the current best sequence (though it might not actually be a so-
lution). The final step before the sampling begins occurs in line 5, where we initialize
a probability distribution over all states,9 starting out as the uniform distribution.

The while loop in lines 6-13 then performs the main search; giveUp is a predicate
given by parameter which simply tells us when the algorithm should stop (it can be
based on total number of samples, time elapsed, etc). The value j represents the length
of the sequence of states currently considered, and numIter is a parameter indicating
how many iterations we wish to perform for each length. Line 9 performs the sampling
of sequences, while line 10 assigns a score to each based on the transition cost function.
After updating the score of the best solution found up to now, line 13 updates the
probabilistic model P being used by keeping only the best solutions found during the
last sampling phase. The algorithm finally returns the best solution it found (if any).

9In an actual implementation, the probability distribution should be represented implicitly, as storing a
probability for an exponential number of states would be intractable.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:22 G. I. Simari et al.

An attractive feature of DE CBQA is that it is an anytime algorithm, that is, once it
finds a solution, given more time it may be able to refine it into a better one while
always being able to return the best so far. We will show how the algorithm works
shortly.

We first show how the probability distribution P in the DE CBQA algorithm can be
represented, and how this affects the algorithm.

4.2.1. Representing the Probability Distribution via a Probability Vector. One of the simplest
ways in which we can represent a probability distribution over sequences of states
is by means of a probability vector that has one component per possible state in the
sequence. The basic idea in this approach is for the element at position i in the vector
to represent the proportion of “good” samples seen so far that contained state i. One of
the main drawbacks of this approach is its lack of consideration for any dependencies
among the probabilities being represented. However, as we will see in the results of our
experimental evaluation in Section 6, the results obtained are of reasonable quality.
The following is an example of the probability vector approach.

Example 4.9. Consider once again the ap-program from Figure 1, and the states
from Figure 2. Suppose that we have the following inputs. The goal is kidnap(1) :
[0, 0.6]; the transition probabilities are as follows: T(s4, s1) = 0.1, T(s4, s2) = 0.1,
T(s4, s3) = 0.1, T(s2, s1) = 0.9, T(s3, s2) = 0.8, T(s5, s2) = 0.9, T(s5, s3) = 0.2,
T(s5, s1) = 0.3, T(s1, s3) = 0.01, and T(si, sj) = 1 for any pair of states si, sj not
previously mentioned; the initial state is s4; the reward function E�,R is defined
as follows: E�,R(s1) = 0.5, E�,R(s2) = 0.15, E�,R(s3) = 0.5, E�,R(s4) = 0.1, and
E�,R(s5) = 0.7; giveUp is a predicate that simply checks if we’ve sampled a total of
5 or more sequences; numIter = 2; h = 3; and k = 1, 000.

The three states that make relevant a subprogram that entails the goal are s1, s2,
and s3. The costs of the two-state direct sequences, computed according to Equation (1)
are the following: costseq(s4, s1) ≈ 108.68, costseq(s4, s2) ≈ 1028.9, and costseq(s4, s3) ≈
108.68; therefore, cbest = 108.68 and φbest = 〈s4, s3〉. Next, since we are assuming that
s1–s5 are the only states for the sake of brevity, the algorithm sets up a probability
vector P with four components (the starting state is not included) that starts out as
(0.25, 0.25, 0.25, 0.25), representing the probabilities that s1, s2, s3, and s5 will be sam-
pled, respectively.

Suppose we sample H = {〈s4, s5, s3〉, 〈s4, s5, s2〉, 〈s4, s1, s3〉}. These sequences have re-
spective costs of 109.23, 103.21, and 1021.71 (once again, cf. Equation (1) to see how these
values were obtained). The update step in line 13 of the algorithm will then look at the
two best sequences in H and, depending on how it is implemented, might update P to
(0.1, 0.5, 0.5, 0.9) (it doesn’t reduce the probability of s1 to zero, nor does it push that of
p5 all the way to one). Thus, the algorithm has seen that s5 seems to be a good state
to include, since both of the “good” sequences involved it. For brevity, suppose that
the next iteration of samples (the last one according to giveUp) contains 〈s4, s5, s1〉,
whose cost is ≈ 102.89; it is the best seen so far, and since 102.89 < k, it is a valid
answer.

4.2.2. Representing the Probability Distribution via a Bayesian Network. While the probability
vector representation is neither memory- nor computationally-intensive, it ignores any
subtle relationships that may exist between individual states or their ordering in the
overall sequence. For instance, suppose there is some state that is very desirable if and
only if it is visited immediately after the initial state; otherwise, it is extremely unde-
sirable. If DE CBQA happens to choose this state initially, its naı̈ve probability vector
will be inclined to recommend the state equally at all locations in future sequences,
including those that are undesirable.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:23

It is reasonable to believe that real instances of CBQA will exist where states and
actions are not conditionally independent; as such, it is critical to explore a more in-
formed approach to maintaining our probability distribution. One such method is the
Bayesian belief network [Pearl 1988], a directed acyclic graph modeling conditional de-
pendencies among random variables. In our case, each node in the network structure
represents a random variable covering all possible states for a single (ordered) position
in the final sequence. For a given node, a state is assigned probability mass propor-
tional to how likely it is to be included in a “good” sequence at the position associated
with that node. These values are initially provided through uninformed sampling of
the state space, while the structure of the final network is learned through standard
machine learning techniques.

Since an exhaustive search for the optimal structure across all potential networks is
superexponential in the number of variables (in our case, the length of the sequence)
we use a heuristic local search algorithm to perceive graph structure. We use a slightly
modified K2 search algorithm with a fixed ordering based on the sampled sequences to
emphasize speed of structure learning [Cooper and Herskovits 1992]. Our intuition is
that neighboring nodes in the sequence are more likely to affect each other than those
farther away. Many other heuristic search algorithms exist, but a discussion of their
merits is outside the scope of this paper.

Sampling from the network is accomplished in two steps. First, recall that a state’s
probability mass at a root node in our Bayesian network is related only to the pro-
portion of “good” training sequences containing that state at a specific location. With
this in mind, for every root node, we take a weighted sample from its prior probability
distribution table. Second, we sample the conditional probability table of each child
node with respect to the partial assignment provided by sampling its immediate par-
ents. In this way, we provide a method for sampling a full path through the state space
that takes into account conditional dependencies (and, of course, independencies) be-
tween states, their ordering, and position. The following is an example of the Bayesian
Network approach based on Example 4.9.

Example 4.10. Suppose we have the same setup as in Example 4.9; this time,
the probability distribution over possible sequences is a Bayesian network that has
three nodes (for now, since we are sampling sequences of length three). The prior
probability distribution on each of these nodes is the uniform distribution over
its possible values, that is, all possible states excluding the initial state. As be-
fore, suppose we start by sampling the same sequences as in the first round: H =
{〈s4, s5, s3〉, 〈s4, s5, s2〉, 〈s4, s1, s3〉}.

Now, the algorithm can update the prior probability table for the first position in
the sequence to heavily favor sampling state s5. Even though this is similar to what
happened in the probability vector case, the representation is now rich enough to state
that what it has learned is that starting with s5 yields good results, whereas the prob-
ability vector could only represent that its participation in sequences lead to favorable
results (without really having good evidence to support this). Similarly, based on this
round of sampling, the Bayesian network could be updated to represent the fact that
s3 and s2 should have higher chances of being sampled for the second position given
that s5 was sampled for the first.

Even though this is a simple example, it clearly illustrates the difference in repre-
sentational power between the two approaches. In Section 6, we present the results
of our experimental evaluation of the DE CBQA algorithm under both approaches
for representing the probability distribution, comparing it first to an exact solver and
then investigating its scalability. The computational cost and the accuracy of both ap-
proaches will also be compared.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:24 G. I. Simari et al.

Fig. 10. A parallel algorithm for finding entailing states for the CBQA problem.

5. PARALLEL SOLUTIONS FOR ABDUCTIVE QUERY ANSWERING

In the previous section, we presented algorithms for answering both basic and cost-
based abductive queries, along with several heuristic approaches to improve the
tractability of these computations. However, we can make further gains in scalability
and computation time by identifying portions of these problems to compute in parallel.
In this section, we present two explicitly parallel algorithms for solving CBQA prob-
lems. One algorithm will search for potential entailing states in parallel, allowing us
to either examine more possible states, or to improve the running time of finding an
entailing state. In addition, the iterative sampling for CBQA can be made more effec-
tive by parallelizing the sampling process, allowing for a more comprehensive search
over the possible paths to goal states.

5.1. Parallel Selection of Entailing States

Recall the DE CBQA algorithm in Figure 9 and the getGoalStates function invoked in
line 1; this function returns entailing states, that is, states s s.t. �s |= �′. In practice,
as we will see in Section 6, the large search space makes it intractable to find all such
states, and so the number of goal states returned must be limited by the user. The
implementation of getGoalStates that we developed for our experimental evaluation
iteratively goes through potential goal states until one is found; the heuristic meth-
ods shown in Algorithm simpleAnnBAQA-Heur-RC (Figure 5) are used to make quick
(sound, but not complete) entailment checks.

Rather than looking at potential goal states in sequence, we can parallelize
this procedure. Figure 10 contains a distributed version of getGoalStates called
PAR getGoalStates that will divide the state space and check for entailing states in
parallel over N processors.

The DE CBQA algorithm can now be run with PAR getGoalStates in line 1. With
this method, the user can specify some termination condition giveUp (e.g., the number
of goal states to find, the amount of search time, etc.) for the concurrent search for
entailing states. In lines 9 and 10, we divide the state space 2Lsta across N processors,
and iterate through each batch in parallel to find entailing states until the giveUp
condition is true.

If the size of SG is still limited to a single goal state, then PAR getGoalStates can
provide a direct speedup of the original method, using the distributed computation to
more quickly identify an entailing state. However, we can also take advantage of the

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:25

Fig. 11. A synchronized parallel algorithm for CBQA using iterative distributive sampling.

parallelization to find a larger number of goal states to test in the DE CBQA algorithm,
rather than simply looking at the first state found.

5.2. Parallel Sampling of State Paths

The sampling method in the DE CBQA algorithm allows the user to specify the num-
ber of possible paths to examine to reach a particular goal state. In practice, the space
of possible paths from the initial state to a goal state can be very large, and random
sampling may not reliably be able to find a low-cost option within a tractable compu-
tation time. In Figure 11 we present a distributed algorithm, ParSample DE CBQA,
that will divide the iterative sampling of state paths across N processors.

Lines 1–8 of ParSample DE CBQA are identical to the serial version of this algo-
rithm. However, beginning in line 9 we divide the number of sequences per iteration
into batches for parallel sampling. Working in batches of size N (the number of avail-
able processors) we distribute the sampling of h paths from s0 to each goal state. Af-
ter each batch completes, we compare the costs of the sampled paths and record the
optimal sequence. This result is updated after each iteration of distributed samples,
making this an anytime parallel algorithm over N processors. ParSample DE CBQA
also synchronizes the state sequences probability distribution with results from all of
the parallel samples, and each node will use the improved distribution in the next
iteration of sampling.

In some cases, this synchronization may require prohibitive amounts of commu-
nication overhead in comparison to the computation time necessary for sampling
sequences. As an alternative, ParSampleAsynch DE CBQA (Figure 12) is another
distributed algorithm for solving the CBQA problem that does not synchronize the
probability distributions. In ParSampleAsynch DE CBQA, each of the N parallel
nodes performs a separate round of iterative sampling, maintaining its own sequence
probability distribution and returning the best sequence resulting from these samples.
Then, in line 16, we return the overall φbest sequence from each of the distributed
samples. While this asynchronous computation is not the same as increasing the

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:26 G. I. Simari et al.

Fig. 12. An asynchronous parallel algorithm for CBQA using iterative distributive sampling.

number of samples by a factor of N, as we are not using all samples to update the
probability distribution, it does facilitate better coverage of the possible sequences.
Because of this, we are more likely to find better sequences, and may be able to achieve
this result with a fewer number of samples per iteration. We can of course also use
the parallel version of getGoalStates, described before, along with either concurrent
iterative sampling algorithm to further improve performance and results.

6. EXPERIMENTAL RESULTS

In this section, we will report on a series of experimental evaluations that we carried
out on the algorithms presented in Sections 3, 4, and 5. Due to the vast number of
possible parameters in these algorithms, we chose to vary a subset of them for the
purposes of this study.

A note about state space size. As with ground action atoms and worlds, the number
of possible states grows exponentially with the number of ground state atoms. How-
ever, the situation is made worse in the case of states since the cardinality of this set
influences the number of possible state transitions, and therefore also the number of
sequences of states, which is basically the search space of the problem at hand10. For
n ground state atoms, we have 2n states, 22n state transitions, and

(22n

k

)
possible se-

quences of length k without repetition. Thus, for 10 ground state atoms we have 1, 024
states, around 1 million possible state transitions, and about 1018 possible sequences
of length 3. This number rapidly grows to about 1036 for 13 ground state atoms and
sequences of length 5.

6.1. Empirical Evaluation of Serial Algorithms for BAQA

We conducted experiments using a prototype Java implementation consisting of
roughly 2,500 lines of code. All experiments were run on multiple multi-core Intel
Xeon E5345 processors at 2.33GHz, 8GB of memory, running the Scientific Linux dis-
tribution of the GNU/Linux operating system, kernel version 2.6.9-55.0.2.ELsmp. We

10Another direct consequence of this is that the number of possible state transitions directly affects the size
of the transition probability matrices, at least for explicit representations.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:27

Fig. 13. Varying number of ground state atoms for
programs with 5 rules, 25 ground action atoms, 5
reachability constraints, and atomic queries.

Fig. 14. Varying the number of ground action
atoms for ap-programs with 5 rules, 5 ground state
atoms, and non-atomic queries.

Fig. 15. Varying number of rules; 25 ground action
atoms, 5 ground state atoms, and atomic queries.

Fig. 16. Varying number of rules (with 10% of them
goal-conflicting); 25 ground action atoms, 5 ground
state atoms, and atomic queries.

Fig. 17. Varying the percentage of rules that are in
conflict with the goal; ap-programs with 10 rules.

Fig. 18. Varying number of rules (larger ap-
programs); 25 ground action atoms, 5 state atoms,
and 5 reachability constraints.

note that this implementation makes use of only one processor and one core. All num-
bers reported are averages over at least 20 runs to minimize experimental error; runs
were performed over randomly generated ap-programs and goals based on the fol-
lowing parameters: number of ground state and action atoms, number of reachability

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:28 G. I. Simari et al.

constraints, number and size of clauses in rule heads and reachability constraints,
number of rules, and number and size of clauses in goals. Since these experiments
were designed to show the effects of varying certain parameters, those that were not
varied in each case were kept at low values to simplify the presentation of the results
(see, e.g., the number of ground state atoms in Figure 14, or the number of ground
action atoms in Figure 15).

Each ap-program used in the experiments consists of a set of randomly generated
ap-rules, each with a randomly generated head and body. The head consists of either
one or two clauses of length at most two variables each, with conjunction, disjunction,
and negation connectors chosen uniformly at random. The head is nontrivial; it is
guaranteed to have at least one atom in at least one clause. Each ap-rule’s body is
generated by randomly selecting a conjunction of two atoms. The goal ap-formula is
generated in a similar fashion, but with randomly generated upper and lower bounds.
When experiments require a threshold goal, either the upper bound is set to 1 or the
lower bound is set to 0.

No. of State Atoms. In Figure 13 we show the running times of the different ap-
proaches to deciding reachability; the naı̈ve approach becomes intractable very quickly,
while the (still exact) SAT-based algorithm approach has negligible cost for these runs.

No. of Action Atoms. Figure 14 shows the effect of varying the number of action
atoms on the running times of the different approaches to solving the rule selection
problem. Again we see how SimpleAnn is only slightly better than naı̈ve since conflict-
ing rules did not arise in the randomly generated programs. The algorithms applying
the (sound but not complete) heuristics exhibit a much lower running time, though are
clearly affected by the increase in number of atoms due to the difficulty of satisfiability
and entailment checks.

No. of Rules. Figure 15 reports the running times of the SimpleAnn rule selection
algorithms, where SimpleAnn-Heur refers to the optimistic application of the entailing
rules heuristic used in algorithm SimpleAnn (based on Lemma 3.10). We can see that
both the naı̈ve approach and SimpleAnn quickly become intractable as the number of
rules in the input program increases. For SimpleAnn, this is because the randomly
generated programs do not provide it with the opportunity to apply its enhancements
over the naı̈ve approach, in particular dismissing conflicting rules. To show the effect
of the presence of this kind of rules, we ran another series of experiments in which a
certain percentage of the rules in the input program were forced to be in probabilistic
conflict with the goal; the results are shown in Figures 16 and 17. The former shows
the same experiment as Figure 15 but with (rounded) 10% of the rules forced to be in
conflict, while the latter shows the effect of increasing this percentage for programs
of 10 rules. Both figures show how SimpleAnn leverages the presence of these rules,
greatly reducing its running time w.r.t. that of the naı̈ve algorithm.

The last set of experiments are presented in Figure 18, which shows the run-
ning times for the SimpleAnn heuristic step (that is, assuming the algorithm only
tries to apply the entailing rules heuristic and returns false otherwise) and the
SimpleAnnBAQA-Heur-RC algorithm for larger programs. It is interesting to see the
different shapes of the curves: as programs get larger, the SAT formulas associated
with SimpleAnnBAQA-Heur-RC become larger as well, leading to the gradual increase
in the running time; on the other hand, we can see that the strategy of only focusing
on certain “heuristic rules” pays off for the SimpleAnn heuristic step, but there is a
spike in running time when the size grows from 400 to 500 rules. This is likely due to
the appearance of more such rules, which means that the algorithm has many more
subprograms to verify.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:29

Finally, we would like to point out that all runs reported a percentage of false neg-
atives of at most 20% for the heuristic algorithms (false positives are not possible
because they are sound algorithms), and were close to zero in many cases. An inter-
esting topic for future work is to extend this experimental study to investigate which
parameters have the most influence over the precision of our heuristics.

6.2. Empirical Evaluation of Serial Algorithms for CBQA

We carried out all experiments on an Intel Core2 Q6600 processor running at 2.4GHz
with 8GB of memory available, using code written in Java 1.6; all runs were performed
on Windows 7 Ultimate 64-bit OS, and made use of a single core.

First, we compare the running time and accuracy of the MDP formulation against
that of the DE CBQA algorithm. Recall that DE CBQA randomly selects states with
respect to a probability distribution that is updated from one iteration to the next. As
we have discussed, the simplest way to represent this probability distribution is with
a vector of size |S|, where the element at position i represents the proportion of “good”
samples that contained state i. This representation does not scale as |S| increases;
our implementation thus only keeps track of the states we have visited, implicitly
assigning proportion 0 to all nonvisited states. As such, the required storage for the
probability distribution is proportional only to the number of states visited, not the
entire state space.

Second, we explore instances of CBQA that are beyond the scope of the exact MDP
implementation, but within reach of the DE CBQA heuristic algorithm. As discussed
in Section 4.1, our problem assumes the agent being modeled can carry out actions in
parallel. For realistic problem settings, this leads to a very large number of possible
actions to be considered at every state, alongside an equally large number of states
to consider. As such, the exact MDP algorithm runs in polynomial time with respect
to an exponential number of actions and states, losing its tractability. To address this
shortcoming, we apply the basic DE CBQA algorithm to large problem instances and
discuss how it scales in relation to increased rule and state spaces.

Finally, we explore a different representation of the probability distribution in the
DE CBQA algorithm based on a Bayesian network. We contrast the two implemen-
tations of the DE CBQA algorithm in large problem instances and end with a dis-
cussion of “smarter” heuristics and their effects on both running time and quality of
result.

For all experiments, we assume an instance of the CBQA problem with ap-program
� and cost-based query Q = 〈G : [�, u] , s, costT, k〉. The required cost, transition, and
reward values for both algorithms are assigned randomly in accordance with their
definitions. We assume an infinite budget for our experiments, choosing instead to
compare the numeric costs associated with the sequences returned by the algorithms.

Exact MDP versus Heuristic DE CBQA. Let SMDP and AMDP be the state and action
spaces of the MDP corresponding to a given CBQA; each iteration of the Value Iteration
algorithm requires O

(∣∣SMDP
∣∣2 · ∣∣AMDP

∣∣) time. From the transformation discussed in
Section 4.1, we see that

∣∣AMDP
∣∣ = ∣∣SMDP

∣∣; furthermore, since
∣∣SMDP

∣∣ is exponentially
larger than the number of state atoms found in �, we expect running the multiple
iterations of Value Iteration required to obtain an optimal policy to be intractable for
all but very small instances of our problem. Our experimental results support this
intuition.

For this set of experiments, we varied the number of state atoms, action atoms, and
ap-rules in an ap-program �; 10 unique ap-programs were created per combination
of these inputs. We tested 10 randomly generated cost, transition, and reward assign-
ments for each unique ap-program. Then, for each of these generations, we tested

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:30 G. I. Simari et al.

Fig. 19. Log-scale running time comparison of MDP and DE CBQA, shown with increasing state size (top
axis) for each of 2, 4, 8, and 16 rules (bottom axis). Note the sharp jump in running time as the number of
rules increases compared to the gradual upward trend as the number of states rises.

multiple runs of the MDP and DE CBQA algorithms. We varied the discount factor γ

and maximum error ε for the MDP11, while exploring different completion predicates,
maximum and minimum sequence lengths, and number of iterations per sequence
length for DE CBQA. We now provide an overview of the results we obtained.

Figure 19 compares the running time (log-scale) of both algorithms. Immediately
clear is the fact that, although increasing state and rule space size slows down both
algorithms, DE CBQA consistently outperforms the standard MDP implementation.
More subtle is the observation that the difference in running times between the two
algorithms increases with the number of states, with DE CBQA maintaining nearly
constant running time across small numbers of states as the MDP implementation in-
creases noticeably. This disparity is explained at least in part by the MDP’s optimality
requirement; it requires an exhaustive list of all goal states while DE CBQA can rely
on faster heuristic search methods (see Section 3). As the state space increases, so too
does the list of states that must be tested for entailment of the goal ap-formula.

We now compare the costs of sequences returned by MDP and DE CBQA, as given
by Equation (1). Typically, the recommended sequences’ costs are close12; however, in
rare cases, DE CBQA performs poorly. We believe this is due to the initial probability
distribution assigning mass uniformly to all states, meaning that “good” and “bad”
states are equally likely to be selected, at least initially. When DE CBQA randomly
selects bad states at the start, its ability to find better, lower-cost states in future
iterations is hampered. Given its low running time, one strategy for dealing with these
fringe cases is executing DE CBQA multiple times, selecting and returning the overall
lowest-cost sequence over all runs. In general, increasing the number of iterations
(line 8 in Figure 9) did not affect sequence cost; however, increasing the number of
samples per iteration (line 9 in Figure 9) often resulted in a better sequence. This
hints that allowing the probability mass to converge to a small number of states too
quickly is not desirable, as low-cost candidates that are not immediately evident can
be ignored. Furthermore, increasing the minimum and maximum sequence lengths
(lines 4 and 6 in Figure 9) did not benefit the final result.

Finally, we tried using Policy Iteration [Tseng 1990] instead of Value Iteration to
solve the MDP; however, this method was either slower than Value Iteration or, if

11Given γ and ε, one can calculate an error threshold that guarantees an optimal policy [Williams and Baird
1994].
12In terms of relative error, η = |v−v′|

|v| , for true cost v (MDP) and approx. cost v′ (DE CBQA).

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:31

Fig. 20. Log-scale running time as DE CBQA scales with respect to number of states (top axis) and number
of rules (bottom axis). Note the addition of extra rules slows down algorithm execution time much more
significantly than a similar increase in state space size.

Fig. 21. Towards the limits of our current implementation. Timing results taken by maximizing an individ-
ual parameter (the numbers in bold font). The size of the state space was limited by system memory in this
implementation.

faster, forced to use such a low discount factor γ and error limit ε that following the
resulting policy often yielded a worse sequence than DE CBQA’s recommendation, at
a slower speed!

Scaling the Heuristic DE CBQA Algorithm. As we have seen, the MDP formulation
of CBQA quickly becomes intractable as � becomes more complex. In this section, we
discuss how DE CBQA scales beyond the reach of MDP as the number of states, ac-
tions, and rules increase. In order to avoid a direct exponential blowup when increasing
the number of rules, we made the same small change to the algorithm that we used in
Section 6.1: whenever no goal states are found with the fast heuristics (line 1), it fails
to return an answer; that is, it takes a pessimistic approach (which can also be seen as
an optimistic application of the heuristic).

Figure 20 compares an increase in number of states to a similar increase in number
of rules; observe that the number of rules seems to have a larger effect on overall run-
ning time, with an increase in state space being less noticeable. This is due to two char-
acteristics of our algorithm. First, the heuristic sampling strategy to find states that
entail the goal formula visits every rule, but not every state. Second, once entailing
states are found, the running time of the DE CBQA algorithm is only as related to the
size of the state space as its probability distribution requires. For the basic probability
vector variant implemented with a data structure that supports constant lookup, there
is very little relation to the number of states. In our experience, real-world instances
of CBQA tend to contain significantly fewer rules than states and actions [Khuller
et al. 2007]. For these cases, DE CBQA scales quite well. Finally, Figure 21 provides
timing results for extreme values of each individual parameter; in each case, the other
parameters were kept at more manageable values.

Toward Better Sampling. While the probability vector approach is neither memory
nor computationally intensive, it ignores any subtle relationships that may exist

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:32 G. I. Simari et al.

Fig. 22. Varying the number of seeded paths with
a small (e.g., 16 or 32) number of states versus a
larger (e.g., 512 or 1024) state space.

Fig. 23. Varying the number of seeded paths (and
thus the level of conditional dependence in the
world) as a percentage of the total number of states.

between individual states or their ordering in the overall sequence. Intuitively, an in-
formed sampling method should provide higher accuracy (i.e., lower sequence costs) at
a greater computational cost, especially in instances when states and actions interact.
To explore this intuition, we remove some of the randomness from our original testing
suite by seeding desirable paths through the state space. This is accomplished by
manipulating the cost and transition functions between states, yielding low costs for
specific sequences of states and high costs otherwise. In this way, obvious conditional
dependencies are introduced into the world.

We now compare the Bayesian method (implemented with WEKA [Hall et al. 2009])
against the initial naı̈ve probability vector method. First, as a measure of result qual-
ity, we define the cost decrease factor to be the factor difference in the cost of the
best sequence returned by the Bayesian method over that returned by the vector
implementation. Higher cost decrease factors correspond to better relative Bayesian
method performance. Figure 22 shows the cost decrease factor for very small amounts
of seeded paths compared to different sizes of state spaces. For extremely small num-
bers of seeded paths, the Bayesian algorithm outperforms by roughly a factor of 2.
This low number signifies similar performance to the vector method and is due to
both DE CBQA implementations missing the very few “carved” sequences in their ini-
tial sampling, before any probability distribution is constructed. The conditional net-
work constructed from bad sampling is less useful; however, this problem can be easily
solved by repetition of the algorithm.

Two trends, distinguished by the size of the state space, begin to form as we increase
the number of seeded paths. When considering a larger number of seeded paths in
larger state spaces, the Bayesian method shows its ability to discover dependencies in
sampled sequences; however, when considering the same number of paths in a smaller
state space, the Bayesian method continues to perform only slightly better than its
vector counterpart. Carving too many (relative to the size of the state space) desirable
paths essentially randomizes the transitions between states; for example, 20 paths
through only 16 states alters overall dependencies far more than a similar number
through 1, 024 states. We explore this relationship further on.

Figure 23 shows the quality of results as the number of seeded paths is increased
significantly. We see that the Bayesian network version performs admirably in large
state spaces until roughly 8%, when its performance degrades to that of the Bayesian
version in a smaller state space. As in Figure 22, small instances of the problem stay
roughly constant. Regardless of state space size, we see an increase in result quality
of 2 to 3 over the naı̈ve probability vector.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:33

Fig. 24. Log-scale running time as both the Bayesian and vector-based DE CBQA algorithms scale. Note
the linear increase in Bayesian running time caused by structure learning, storage, and sampling overhead.

We have seen that the more informed sampling method performs well, decreasing
overall sequence cost. However, as our initial intuition suggested, the increased over-
head of maintaining conditional dependencies slows the DE CBQA algorithm signif-
icantly. Figure 24 shows that although the memory requirements of both algorithms
increase linearly in the size of the number of states sampled, the Bayesian method is
consistently slower than the vector method. This is due to a similar increase in the
running time complexity of the Bayesian method. The vector method represents prob-
abilities as a simple mapping of states to real numbers; as such, an implementation
with a constant lookup time data structure provides extremely fast sampling with a
small memory footprint. For the more informed Bayesian variant of the heuristic, this
relationship is based both on the number of initial iterations over the state space prior
to the formation of the sampling structure and the maximum length of a sampled
sequence. The Bayesian graph has as many nodes as there are states in a sampled
sequence; furthermore, each of these nodes maintains knowledge of all unique states
corresponding to a particular position in the sequence. Learning the structure of the
network, storing the graph, and sampling from it are all dependent on the number of
sampled states and sequence length. Fortunately, we can apply reasonable bounds to
the number of samples, opting instead to instantiate multiple Bayesian networks over
a smaller sample set.

When we include the additional cost of searching for entailing goal states (line 1
of the DE CBQA algorithm), both the naı̈ve probability vector and informed Bayesian
network methods scale similarly. We use the same fail-fast pessimistic approach to the
heuristic goal search described earlier. Figure 25 shows how both algorithms scale with
respect to an increase in number of states and number of rules. As before, the number
of rules has a significantly higher effect on overall running time than the number of
states. We see that the algorithm scales gracefully to large state/action spaces. As we
mentioned before, in our experience, real-world instances of CBQA tend to contain
significantly fewer rules than states and actions [Khuller et al. 2007]; as such, in these
cases DE CBQA scales quite well.

6.3. Empirical Evaluation of Parallel Algorithms for CBQA

We implemented all three parallel algorithms using the Java Remote Method Invoca-
tion interface for distributed computation, and tested them on 15 nodes of a compute
cluster, each with four 3.4 GHz cores and 8 GB RAM; the ap-programs and goals were
generated in the same way as in the serial experiments (cf. Section 6.1).

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:34 G. I. Simari et al.

Fig. 25. Running time comparison as DE CBQA scales with respect to number of states (top axis) and num-
ber of rules (bottom axis). Note the similarity in running time between the Bayesian and vector probability
models.

First, we compare the running time of the serial and parallel methods for find-
ing entailing states to use in the DE CBQA computation and demonstrate how
PAR getGoalStates can provide significant savings overall. We then compare the per-
formance of the parallel algorithms for iterative sampling in DE CBQA. Unfortunately,
due to the synchronization and communication overhead associated with our particu-
lar implementation, the ParSample DE CBQA algorithm is quite intractable in prac-
tice, often taking 5 times the amount of running time for DE CBQA using the naı̈ve
vector distribution, and up to 35 times the running time for the Bayesian network dis-
tribution. The asynchronous version of this algorithm, ParSampleAsynch DE CBQA,
is however able to concurrently run the DE CBQA algorithm with only minimal im-
pact from the communication required to initialize the problem and obtain the overall
best sequence.

Second, we compare the quality of the sequences returned by the asynchronous par-
allel sampling algorithm and the serial DE CBQA computation. Using 1,024 samples
per iteration as a baseline for the serial algorithm, we run both algorithms over large
rule and state spaces, varying the number of parallel samples per iteration. Because
the parallel method takes distinct samples in parallel, it is able to explore more of the
state space and find better sequences with a fewer number of samples.

Parallel methods for finding entailing states. We performed two experiments to de-
termine the effectiveness of PAR getGoalStates as compared to the serial getGoalStates
method. The default size of SG (the set of goal states) in getGoalStates is either the to-
tal number of possible states or 50, whichever value is smaller. The first experiment
uses this same cap of 50 entailing states, varying the number of states between 16 and
4,096 and the number of rules from 256 to 4,096. The parallel algorithm effectively di-
vides the state space to find goal states concurrently, consistently running much more
efficiently than the serial version (Figure 26). For 4,096 states and rules, the parallel
entailment method requires 4.96 seconds, whereas serial selection is 20 times slower,
taking 100.8 seconds. Furthermore, as shown in Figures 27 and 28, the computation
time required by the parallel algorithm increases only very slowly as the number of
states and rules increase, indicating that this method will scale to a much larger num-
ber of states and larger programs. Because the entailment time is often a significant
portion of the DE CBQA algorithm’s running time, especially for large state-spaces,
the parallel method provides significant overall savings.

Parallel Iterative Sampling. As discussed before, the communication and synchro-
nization overhead required for the ParSample DE CBQA algorithm is far too costly in
practice to make this method useful. However, empirical tests showed that the perfor-
mance of the asynchronous parallel algorithm is very good with respect to the serial
DE CBQA algorithm. In Figure 29, the running time of ParSampleAsynch DE CBQA
is compared with that of the serial version for both the vector and Bayesian distribu-
tion methods. For the parallel computations, we performed 60 concurrent rounds of

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:35

Fig. 26. Running time for both the parallel PAR getGoalStates and serial getGoalStates methods to find up
to 50 entailing states.

Fig. 27. Running time for both the parallel
PAR getGoalStates and serial getGoalStates meth-
ods to find entailing states. The number of states
was varied between 16 and 4,096, and the number
of rules held constant at 4,096.

Fig. 28. Running time for both the parallel
PAR getGoalStates and serial getGoalStates meth-
ods to find entailing states. The number of rules was
varied between 256 and 4,096, and the number of
states held constant at 2,048.

the DE CBQA iterative sampling, using all 4 cores on each of 15 nodes of the compute
cluster. When using the probability vector representation, the communication required
to set up the remote computations and combine the final results still dominates the
computation even in the asynchronous sampling; in many cases the parallel version
takes at least twice as long. However, this difference is much smaller in the case of the
Bayesian algorithm. A two-sample t-test at the 95% confidence level indicates with a
very high p-value of 0.8881 that there is no significant difference between the running
times of the parallel and serial algorithms with the Bayesian distribution.

Even though we are not synchronizing the updated probability distributions, the
ParSampleAsynch DE CBQA algorithm is capable of computing multiple concurrent
rounds of sampling, providing potentially greater coverage of the possible state
sequences. This expanded sampling ability is able to provide better quality (i.e., lower
cost) result sequences than the standard serial version. Figure 30 compares the aver-
age cost ratio of sequences found by the serial and parallel sampling algorithms, where
the cost decrease factor is defined as Cost of sequence found by serial

Cost of sequence found by parallel . In this experiment,
we used 1,024 serial samples as our baseline, and varied the number of parallel sam-
ples from 32 to 1,024 for a large number of states (212) and rules (1,024) using both the
naı̈ve vector and Bayesian net distributions. As before, this experiment utilizes all 4
cores on each of 15 nodes in a cluster. With as few as 64 samples taken by each of these
60 processors, both the vector and Bayes versions of ParSampleAsynch DE CBQA
achieve a quality almost at parity with 1,024 serial samples, with a cost decrease

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:36 G. I. Simari et al.

Fig. 29. Running time comparison of ParSampleAsynch DE CBQA and serial DE CBQA using both the
vector and Bayesian distributions.

Fig. 30. Cost comparison of algorithms ParSam-
pleAsynch DE CBQA and serial DE CBQA using
the vector and Bayesian distributions. The number
of serial samples per iteration were held constant
while the parallel samples per iteration were var-
ied. The speedup factor measures the ratio of the se-
rial best sequence cost to the parallel best sequence
cost.

Fig. 31. Running time speedup of algorithm
ParSampleAsynch DE CBQA versus serial
DE CBQA using both the vector and Bayesian
distributions. The number of serial samples per
iteration were held constant while the parallel
samples per iteration were varied. The speedup
factor measures the ratio of the serial running time
to the parallel running time.

factor of about 0.971 and 0.918 respectively. At 128 samples, both algorithms surpass
the quality of the serial DE CBQA and find sequences with much lower costs.

The overall efficiency gains of the ParSampleAsynch DE CBQA algorithm are il-
lustrated in Figure 31. Using the same parameters as the quality experiments just
described, we also compared the running times of these algorithms. Not only does this
method provide improved quality in the same amount of time for the default number of
1,024 samples—a 3.6 cost decrease factor for the Bayesian distribution (Figure 30)—
but we can achieve greater quality in a shorter period of time. For example, taking 128
parallel samples and using the Bayesian distribution, ParSampleAsynch DE CBQA
requires only about 1

5 the time as DE CBQA for 1,024 samples (16.26 and 3.29 sec-
onds, respectively), but is able to find sequences with an average cost decrease factor
of 1.57.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:37

7. RELATED WORK

Abduction has been extensively studied in diagnosis [Console and Torasso 1991; Peng
and Reggia 1990], reasoning with non-monotonic logics [Eiter and Gottlob 1995; Eiter
et al. 1997b], probabilistic reasoning [Bhatnagar and Kanal 1993; Josang 2008; Pearl
1991; Poole 1993, 1997], argumentation [Kohlas et al. 2002], planning [Eshghi 1988;
Shanahan 2000], and temporal reasoning [Eshghi 1988]; furthermore, it has been
combined quite naturally with different variants of logic programs [Baldoni et al.
1997; Christiansen 2008; Denecker and Kakas 2002; Eiter et al. 1997a; Kakas et al.
2000]. An abductive logic programming theory is a triple (P, A, IC), where P is a logic
program, A is a set of ground abducible atoms (that do not occur in the head of a
rule in P), and IC is a set of classical logic formulas called integrity constraints. An
explanation for a query Q is a set � ⊆ A such that P ∪ � |= Q, P ∪ � |= IC, and P ∪ �
is consistent. This is an abstract definition, independent of syntax and semantics; the
variations in how such aspects are defined has led to many different models.

David Poole and others combined probabilistic and non-monotonic reasoning, lead-
ing to the development of Probabilistic Horn Abduction [Poole 1993], and eventually
the Independent Choice Logic [Poole 1997]. Christiansen [2008] addresses probabilis-
tic abduction with logic programs based on constraint handling rules. Though these
models are related to our work, they either make general assumptions of pairwise in-
dependence of probabilities of events (such as in [Poole 1997] or [Christiansen 2008])
or are based on the class of graphical models including Bayesian Networks (BNs). In
BNs, domain knowledge is represented in a directed acyclic graph in which nodes rep-
resent attributes and edges represent direct probabilistic dependence, whereas the lack
of an edge represents independence. Joint probability distributions can therefore be ob-
tained from the graph, and abductive reasoning is carried out by applying Bayes’s the-
orem given these joint distributions and a set of observations (or hypothetical events).
Another important problem in BNs that is directly related to abductive inference is
that of obtaining the maximum a posteriori probability (usually abbreviated MAP, and
also called most probable explanation, or MPE). The main difference between graphical
model-based work and our work is that we make no assumptions on the dependence
or independence of probabilities of events.

While AI planning may seem relevant, there are several differences. First, we are
not assuming knowledge of the effects of actions; second, we assume the existence
of a probabilistic model underlying the behavior of the entity being modeled. In this
framework, we want to find a state such that when the atoms in the state are added
to the ap-program, the resulting combination entails the desired goal with a given
probability. While the italicized component of the previous sentence can be achieved
within planning, it would require a state space that is exponentially larger than the
one we use. In this space, the search space would be the set of all sets of atoms closed
under consequence that are jointly entailed by any subprogram of the ap-program and
any state (under the definition in this paper). This would cause states to be potentially
exponentially larger than those in this paper and would also exponentially increase
their number.

8. CONCLUSIONS

There are many applications where we need to reason about the behaviors of actors
about whom we can learn probabilistic rules of behavior. Examples of such applications
include the modeling of terror groups [Mannes et al. 2008a, 2008b], or the modeling
of animal groups (e.g., groups of gorillas that exhibit behaviors such as avoidance of
other gorilla groups, attacks on other gorilla groups, and so forth) [Bryson et al. 2007].
The US Treasury, for instance, is interested in modeling behaviors of investor groups

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

12:38 G. I. Simari et al.

to learn their attitudes towards risk under different conditions. Governments are in-
terested in the impact of policies on groups (e.g., farmers). In many cases, we would
like to influence these behaviors by understanding what actions we can take to ensure
that the probability that a desired outcome occurs exceeds some threshold. This is fur-
ther complicated by the fact that groups do not take actions “one at a time”, but these
actions are often correlated and planned and, furthermore, the effects of these actions
are not well understood.

We have formulated these problems via the Basic Abductive Query Answering
(BAQA) and Cost-based Query Answering (CBQA) problems. We have studied the com-
putational complexity of both these algorithms and developed exact algorithms, as
well as heuristic algorithms that are relatively fast and sound, though not complete.
We have developed innovative algorithms that maintain and update probability dis-
tributions as they run, allowing better estimation of solutions while reducing running
times. Finally, a further important contribution is the first parallel algorithm for ab-
duction in probabilistic logic. We present two parallel algorithms for CBQA and show
that one of them works very well in practice.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers of this manuscript for their insightful comments, which
helped improve this work.

REFERENCES

Asal, V., Carter, J., and Wilkenfeld, J. 2008. Ethnopolitical violence and terrorism in the Middle East. In
Peace and Conflict 2008, J. Hewitt, J. Wilkenfeld, and T. Gurr Eds., Paradigm.

Baldoni, M., Giordano, L., Martelli, A., and Patti, V. 1997. An abductive proof procedure for reasoning about
actions in modal logic programming. In Selected Papers from the Workshop on Non-Monotonic Exten-
sions of Logic Programming (NMELP’96). Springer, 132–150.

Bellman, R. 1957. A Markovian decision process. J. Math. Mech. 6.
Bhatnagar, R. and Kanal, L. 1993. Structural and probabilistic knowledge for abductive reasoning. IEEE

Trans. Pattern Anal. Mach. Intell. 15, 3, 233–245.
Boutilier, C., Dearden, R., and Goldszmidt, M. 2000. Stochastic dynamic programming with factored repre-

sentations. Artif. Intell. 121, 1–2, 49–107.
Bryson, J. J., Ando, Y., and Lehmann, H. 2007. Agent-based modelling as scientific method: A case study

analysing primate social behaviour. Philos. Trans. R. Soc. London, Ser. B 362, 1485, 1685–1698.
Christiansen, H. 2008. Implementing probabilistic abductive logic programming with constraint handling

rules. In Constraint Handling Rules, T. Schrijvers and T. W. Frühwirth Eds., Lecture Notes in Computer
Science Series, vol. 5388, Springer, 85–118.

Chvtal, V. 1983. Linear Programming. W.H.Freeman, New York.
Console, L. and Torasso, P. 1991. A spectrum of logical definitions of model-based diagnosis. Comput. In-

tell. 7, 3, 133–141 .
Cooper, G. and Herskovits, E. 1992. A Bayesian method for the induction of probabilistic networks from

data. Machine Learning 9, 4, 309–347.
de Bonet, J. S., Isbell, C. L. Jr., and Viola, P. A. 1996. MIMIC: Finding optima by estimating probability densi-

ties. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS’96).
MIT Press, 424–430.

Denecker, M. and Kakas, A. C. 2002. Abduction in logic programming. In Computational Logic: Logic Pro-
gramming and Beyond, Essays in Honour of Robert A. Kowalski, Part I, Springer, 402–436.

Eiter, T. and Gottlob, G. 1995. The complexity of logic-based abduction. J. ACM 42, 1, 3–42.
Eiter, T., Gottlob, G., and Leone, N. 1997a. Abduction from logic programs: Semantics and complexity. Theor.

Comput. Sci. 189, 1–2, 129–177.
Eiter, T., Gottlob, G., and Leone, N. 1997b. Semantics and complexity of abduction from default theories.

Artif. Intell. 90, 90–1.
Eshghi, K. 1988. Abductive planning with event calculus. In Proceedings of the International Conference on

Logic Programming. 562–579.

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

�

�

�

�

�

�

�

�

Parallel Abductive Query Answering in Probabilistic Logic Programs 12:39

Fagin, R., Halpern, J. Y., and Megiddo, N. 1990. A logic for reasoning about probabilities. Inf. Comput.
87, 1/2, 78–128.

Giles, J. 2008. Can conflict forecasts predict violence hotspots? New Scientist 2647.
Hailperin, T. 1984. Probability logic. Notre Dame Journal of Formal Logic 25, 3, 198–212.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. 2009. The WEKA data mining

software: An update. ACM SIGKDD Explor. Newsletter 11, 1, 10–18.
Josang, A. 2008. Abductive reasoning with uncertainty. In Proceedings of the Conference on Information

Processing and Management of Uncertainty, L. Magdalena, M. Ojeda-Aciego, and J. L. Verdegay Eds.,
9–16.

Kakas, A., Michael, A., and Mourlas, C. 2000. ACLP: Abductive constraint logic programming. J. Logic
Program. 44, 129–177(49).

Kern-Isberner, G. and Lukasiewicz, T. 2004. Combining probabilistic logic programming with the power of
maximum entropy. Artif. Intell. 157, 1–2, 139–202.

Khuller, S., Martinez, M. V., Nau, D. S., Sliva, A., Simari, G. I., and Subrahmanian, V. S. 2007. Computing
most probable worlds of action probabilistic logic programs: Scalable estimation for 1030,000 worlds.
Ann. Math. Artif. Intell. 51, 2–4, 295–331.

Kohlas, J., Berzati, D., and Haenni, R. 2002. Probabilistic argumentation systems and abduction. Ann. Math.
Artif. Intell. 34, 1–3, 177–195.

Littman, M. L. 1996. Algorithms for sequential decision making. Ph.D. thesis, Department of Computer
Science, Brown University, Providence, RI.

Lloyd, J. W. 1987. Foundations of Logic Programming 2nd Ed. Springer.
Mannes, A., Michael, M., Pate, A., Sliva, A., Subrahmanian, V. S., and Wilkenfeld, J. 2008a. Stochastic

opponent modeling agents: A case study with Hamas. In Proceedings of the International Conference on
Computer and Communication Devices.

Mannes, A., Michael, M., Pate, A., Sliva, A., Subrahmanian, V. S., and Wilkenfeld, J. 2008b. Stochastic oppo-
nent modelling agents: A case study with Hezbollah. In Proceedings of the 1st International Workshop
on Social Computing, Behavioral Modeling, and Prediction. H. Liu and J. Salerno Eds.

Ng, R. T. and Subrahmanian, V. S. 1992. Probabilistic logic programming. Inf. Comput. 101, 2, 150–201.
Ng, R. T. and Subrahmanian, V. S. 1993. A semantical framework for supporting subjective and conditional

probabilities in deductive databases. J. Autom. Reason. 10, 2, 191–235.
Nilsson, N. 1986. Probabilistic logic. Artif. Intell. 28, 71–87.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-

mann Publishers Inc., San Francisco.
Pearl, J. 1991. Probabilistic and qualitative abduction. In Proceedings of the AAAI Spring Symposium on

Abduction. AAAI Press, Stanford, CA, 155–158.
Pelikan, M., Goldberg, D. E., and Lobo, F. G. 2002. A survey of optimization by building and using proba-

bilistic models. Comput. Optim. Appl. 21, 1, 5–20.
Peng, Y. and Reggia, J. A. 1990. Abductive Inference Models for Diagnostic Problem-Solving. Springer.
Poole, D. 1993. Probabilistic Horn abduction and Bayesian networks. Artif. Intell. 64, 1, 81–129.
Poole, D. 1997. The independent choice logic for modelling multiple agents under uncertainty. Artif.

Intell. 94, 1–2, 7–56.
Puterman, M. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &

Sons.
Shanahan, M. 2000. An abductive event calculus planner. J. Logic Program. 44, 207–239.
Tseng, P. 1990. Solving H-horizon, stationary Markov decision problems in time proportional to log(H).

Oper. Res. Lett. 9, 5, 287–297.
Tsitsiklis, J. and van Roy, B. 1996. Feature-based methods for large scale dynamic programming. Machine

Learning 22, 1/2/3, 59–94.
Williams, R. and Baird, L. 1994. Tight performance bounds on greedy policies based on imperfect value

functions. In Proceedings of the 10th Yale Workshop on Adaptive and Learning Systems.

Received December 2010; revised October 2011; accepted March 2012

ACM Transactions on Computational Logic, Vol. 14, No. 2, Article 12, Publication date: June 2013.

