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Abstract

Kidney exchange, where candidates with organ failure
trade incompatible but willing donors, is a life-saving
alternative to the deceased donor waitlist, which has
inadequate supply to meet demand. While fielded kid-
ney exchanges see huge benefit from altruistic kidney
donors (who give an organ without a paired needy can-
didate), a significantly higher medical risk to the donor
deters similar altruism with livers. In this paper, we be-
gin by proposing the idea of liver exchange, and show
on demographically accurate data that vetted kidney ex-
change algorithms can be adapted to clear such an ex-
change at the nationwide level. We then explore cross-
organ donation where kidneys and livers can be bartered
for each other. We show theoretically that this multi-
organ exchange provides linearly more transplants than
running separate kidney and liver exchanges; this lin-
ear gain is a product of altruistic kidney donors creating
chains that thread through the liver pool. We support
this result experimentally on demographically accurate
multi-organ exchanges. We conclude with thoughts re-
garding the fielding of a nationwide liver or joint liver-
kidney exchange from a legal and computational point
of view.

Introduction
The transplantation of organs from a deceased donor to a
needy living candidate first occurred nearly sixty years ago,
but only became popular in the 1970s due to the introduc-
tion of immunosuppressants that help prevent the rejection
of foreign organs in a patient’s body. Since then, the major-
ity of transplantation has occurred through a deceased donor
waiting list consisting of needy patients who wait for any
willing donor to die, resulting in the harvesting and subse-
quent transfer of a compatible organ from the donor’s ca-
daver to the living patient. There is a great supply shortage
of cadaveric organs in most societies (including the US), and
the imbalance between supply and demand keeps growing.
As of April 2014, there were 100,019 patients waiting for
a kidney, 15,770 waiting for a liver, and 9,047 for another
organ (e.g., pancreas, joint pancreas-kidney, heart, lung, in-
testine) in the US alone.
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In recent years, live donation of organs has significantly
increased the total number of organ transplants. In live do-
nation, a donor gives one of his two kidneys, one of his
two liver lobes, or a part of an intestine, etc., to the pa-
tient so both the donor and patient can live. The effect of
live donation has been most prominent in kidney donation,
where a recent advance—kidney exchange (Rapaport 1986;
Roth, Sönmez, and Ünver 2004)—has provided renewed
hope to even “hard to match” patients. In kidney exchange,
patients bring willing but incompatible donors to a large
waiting pool. Patients can then swap incompatible donors
with other patients. Matching a candidate to a donor is diffi-
cult for a variety of reasons, including blood (ABO) type, tis-
sue (HLA) type, age, and—due to the limitations of current
medical knowledge—unknown exogenous factors. Never-
theless, kidney exchanges on the regional and national scale
have seen marked success over the last few years.

In this paper, we explore the creation of living donor ex-
changes involving organs other than kidneys. We first pro-
pose liver exchange, which is similar to kidney exchange
in some ways, but remains unexplored.1 The major differ-
ence between kidney and liver exchange rests in the in-
creased risk to live donors, with very high rates of donor
morbidity (24%), “near-miss” events in surgery (1.1%), and
mortality (0.2%) compared to live donor kidney transplan-
tation (Cheah et al. 2013). Fielded kidney exchanges derive
significant value from altruistic donors, who enter the ex-
change without a paired needy candidate and trigger long
“chains” of donations within the pool. With such a high risk
of complication from surgery in liver transplantation, we ex-
pect significantly fewer (or no, if deemed unethical by the
medical community) altruistic donors in liver exchange.

With this in mind, we propose multi-organ exchange,
where candidates in need of either kidneys or livers can swap
donors in the same pool. We show theoretically that this
combination provides linearly more transplants than run-
ning separate kidney and liver exchanges; this linear gain
is a product of altruistic kidney donors creating chains that
thread through the liver pool. We support this result ex-
perimentally on demographically accurate kidney, liver, and

1A notable exception is that in Korea, 16 candidates hand-
swapped willing donors in a single hospital over the course of six
years. All swaps were arranged by hand. This shows the feasibility
of the idea at a small scale (Hwang et al. 2010).



cross-organ exchanges. We conclude with thoughts regard-
ing the fielding of a nationwide liver or joint liver-kidney
exchange from a legal and computational point of view.

This paper provides the first foray into the theory and
computational methods necessary to set the groundwork for
a fielded nationwide liver or multi-organ exchange. It is clear
that such exchanges would be highly beneficial for sustain-
ing life and creating value in society.

Preliminaries
In order to develop a nationwide liver or multi-organ ex-
change, we must first accurately model the realities of such
an exchange and design optimal, scalable clearing algo-
rithms for it. In this section, we describe the creation of a
compatibility graph representing the space of possible swaps
among n candidate-donor pairs, based on traits of the can-
didates and donors. We then describe the clearing problem,
a formalization of the process used to determine an optimal
set of swaps.

Compatibility Graph
We begin by encoding an n-patient organ exchange as a di-
rected graph. Construct one vertex for each incompatible
candidate-donor pair. Add an edge e from one candidate-
donor vertex vi to another vj , if the candidate at vj can
take a liver lobe or kidney from the donor at vi. This pro-
cess creates a compatibility graph for the general concept
of barter exchange, where participants can swap items with
each other. Within the compatibility graph, a cycle c repre-
sents a possible swap, with each vertex in the cycle obtain-
ing the item of the next vertex. A matching is a collection of
disjoint cycles; no vertex can give out more than one item
(e.g., more than one kidney or liver lobe). Cycles ensure that
donors give items if and only if their patients receive organs.

Fielded kidney exchanges also gain great utility through
the use of chains (Rees et al. 2009). An altruistic donor initi-
ates a chain by donating his organ to a patient, whose paired
donor donates her organ to another patient, and so on. Due to
significantly increased medical risk to living donors of other
organs, we do not expect many (or possibly any) altruistic
donors outside of kidney exchanges (Cheah et al. 2013).

The Clearing Problem
The clearing problem is that of finding a maximum-
cardinality matching consisting of disjoint chains and cycles
of length at most some small constant L. The cycle-length
constraint is crucial since all operations in a cycle have to be
performed simultaneously. Were this not the case, a donor
might back out after his incompatible partner has received an
organ. This backing out is legal because, in nearly all coun-
tries including the US, it is illegal to form a binding contract
over the exchange of organs. The availability of operating
rooms, doctors, and staff causes long cycles to be unexe-
cutable. As is the practice in the US-wide kidney exchange
and most other real kidney exchanges, we let L = 3. Chains
need not be limited in length (and typically are not in prac-
tice); were a donor to renege before giving an organ but after
his paired patient had received the organ, then no remaining

pair in the pool has lost its “bargaining chip”—although the
collapse of the chain is not desired.

Denote the set of all (uncapped length) chains and all cy-
cles of length no greater than L by C(L). Let |c| represent
the number of candidate-donor pairs in a cycle or chain c.
Then, given binary indicator variables ∀c ∈ C(L), we must
solve the following integer linear program:

max
∑

c∈C(L)

|c| xc s.t .
∑

c:vi∈c

xc ≤ 1 ∀vi ∈ V

The clearing problem with any fixed L > 2 is NP-
complete (Abraham, Blum, and Sandholm 2007). (The cases
L = 2 with no chains and L = ∞ can be solved in polyno-
mial time.) Significantly better (i.e., higher cardinality) re-
sults are found with L = 3 over L = 2, so solving the
NP-complete version of the problem is necessary in prac-
tice (Roth, Sönmez, and Ünver 2007). The problem, at least
with respect to kidneys, can be solved optimally in practice
at the steady-state nationwide scale using a specialized tree
search algorithm based on the branch-and-price framework
for integer programming (Abraham, Blum, and Sandholm
2007). We will later discuss this algorithm in more detail
as well as enhancements to it for liver exchange and multi-
organ exchange.

Combining Exchanges Results in Linearly
More Matches

In this section, we show that combining independent liver
and kidney exchanges leads to a linear gain in the aggregate
number of matches. We show this in an adapted version of
a recent random graph model for kidney exchange due to
Ashlagi et al. (2012). They adapt sparse Erdős-Rènyi graphs
to a model of kidney exchange with two classes of candidate:
those with many incoming edges and those with very few
incoming edges (intuitively, “easy-to-match” and “hard-to-
match” candidates). That model mimics the basic structure
of compatibility graphs seen in fielded kidney exchanges.

They build a random directed compatibility graph
D(n, λ, t(n), pL, pH) with n candidate-donor pairs, t(n)
altruistic donors, a fraction λ < 1 of the n candidate-
donor pairs—representing lowly-sensitized, easy-to-match
patients—who have probability pL of an incoming edge
from each vertex in the pool, and a fraction 1 − λ > 0 of
the n candidate-donor pairs—representing highly-sensitized,
hard-to-match patients—who have probability pH of an in-
coming edge from each vertex in the pool. We assume pL >
0 is constant, and pH = c

n for some constant c > 1; thus,
the graph induced by only those 1−λ fraction of (sensitized)
vertices with incoming edge probability pH is sparse.

We assume, for kidney exchange compatibility graphs
DK , t(n) > 0; however, for liver exchange graphs DL,
t(n) = 0 (i.e., there are no altruistic liver donors). Fi-
nally, define the graph join operator D = join(DK , DL)
between a kidney exchange graph DK and liver exchange
graphDL as follows: add directed edges between candidate-
donor pairs in both pools in accordance with each pair’s as-
sociated probability (pL or pH ); do not add edges from the



t(n) altruistic donors in DK to vertices in DL (since altruis-
tic kidney donors are unwilling to donate a liver).2

In the following theoretical results, we consider cycles
of length at most some constant but chains of any length;
this mimics current practice in kidney exchange, and would
likely mimic that of fielded liver exchange. Thus, an efficient
matching allocates the maximum number of transplants in
cycles of size no more than some constant and chains of
any length. Both results build on the work of Ashlagi et
al. (2012), which considers only a single kidney exchange.

Proposition 1 assumes a linear (in the number of
candidate-donor pairs) number of altruistic donors, while
Proposition 2 works with just a constant number of altruistic
donors. We omit the proof of Proposition 1 due to space, and
contrast both theoretical results at the end of this section.

Proposition 1. Consider β > 0 and γ > 0, kidney compati-
bility graph DK with nK pairs and t(nK) = βnK altruistic
donors, and liver compatibility graph DL with nL = γnK
pairs. Then any efficient matching on D = join(DK , DL)
matches Ω(nK) more pairs than the aggregate of any such
efficient matchings on DK and DL (with probability ap-
proaching 1 as nK approaches∞).

Proposition 2. Consider γ > 0, kidney compatibility graph
DK with nK pairs and constant t > 0 altruistic donors,
and liver compatibility graph DL with nL = γnK pairs.
Then there exists λ′ > 0 such that for all λ < λ′, any ef-
ficient matching on D = join(DK , DL) matches Ω(nK)
more pairs than the aggregate of any such efficient match-
ings on DK and DL (with constant positive probability).

Proof sketch. For small enough λ and large enough c, with
high probability there exists a set SK (of size at least nK/2)
of highly-sensitized pairs inDK that are “too far” away from
lowly-sensitized pairs in DK to be matched in a cycle of
capped length and must be matched in a chain triggered by
an altruist a or not matched at all (Ashlagi et al. 2012). By
similar reasoning, there exists a larger set SK&L of highly-
sensitized pairs in the combined kidney and liver graph (of
size at least (nK + nL)/2 = (1 + γ)nK/2 that must be
matched by an a-initiated chain or not at all.

We apply a general result on sparse random directed
graphs from Krivelevich, Lubetzky, and Sudakov (2013): as
c increases, a directed path of length approaching |SK | in
SK and |SK&L| in SK&L exists. Then with constant posi-
tive probability there exists an edge from a to one of the ver-
tices in the first half of the directed path in SK (Ashlagi et
al. 2012); thus, the size of this a-initiated chain approaches
at least |SK |/2 ≥ nK/4 and at most |SK | ≤ nK as c in-
creases. Similarly, with a different but still constant positive
probability there exists an edge from a to one of the ver-
tices in the first (γ/2)|SK | vertices of the directed path in
SK&L (recall that, in expectation, 1/(1 + γ) fraction of this
portion of the path are in the original kidney graph DK , and
γ/(1+γ) in expectation are inDL and thus have probability
0 of an incoming edge from a), resulting in a chain of length

2For the sake of clarity, we assume that the pL (resp. pH ) for
DK equals the pL (resp. pH ) forDL. This is without loss of gener-
ality; all that matters is that pL be constant and pH = c

n
for c > 1.

approaching at least (1 + γ/2)|SK | > |SK | in expectation
(as c → ∞). Thus, by combining pools, we see an increase
approaching at least γ/2|SK |, which is Ω(nK). This is a lin-
ear increase in overall efficiency since nL = γnK .

Intuitively, Propositions 1 and 2 show the theoretical effi-
cacy of combining kidney exchange with alternate organ ex-
changes (where altruistic donation is less likely to be popular
or deemed ethically acceptable).3 We will support Proposi-
tion 1 empirically in the coming sections.
On the dense model for organ exchange. Initial re-
search on random graph models for organ exchange adapted
dense (constant probability of an edge existing) Erdős-Rènyi
graphs to kidney exchange (Ashlagi and Roth 2011; Dick-
erson, Procaccia, and Sandholm 2012b). Fielded exchanges
have proven to be sparse in practice—as in the theory
above—and thus actual pools and their optimal matchings
do not align with these dense models (Ashlagi et al. 2012;
Ashlagi, Jaillet, and Manshadi 2013; Dickerson, Procac-
cia, and Sandholm 2013; 2014). Still, we note that the ef-
ficiency results in the dense model with chains (Theorem 1
of Dickerson, Procaccia, and Sandholm (2012b)) can be ap-
plied directly to independent liver exchange and multi-organ
exchange to yield efficient matchings with linear expected
overall gain from combining pools (given a linear number
of altruists) for large enough compatibility graphs.

Generating and Clearing Demographically
Accurate Pools

In this section, we describe our method for generating or-
gan exchange graphs. We then describe the standard kidney
exchange clearing algorithm and, motivated by generated re-
alistic liver and kidney exchange graphs, present a tweak to
this algorithm to decrease liver exchange solution time.

Data Generation
In order to create an at-scale nationwide liver or multi-organ
exchange, we first have to develop a compatibility graph
generator with which we can run simulations. First, we draw
data from reliable sources (here, specific to the US). Second,
this data is fed into a graph creation algorithm that proba-
bilistically determines the existence of compatible and in-
compatible candidate-donor pairs, as well as compatibility
constraints between different candidate-donor pairs. In the
large, with high probability, graphs generated by this algo-
rithm will mimic the demographics that would prevail in a
large-scale fielded exchange in the US. (Plugging different
raw data (e.g., age, weight, blood type distributions) into

3While Proposition 2 may seem like a stronger result due to its
relaxed reliance on a constant number of altruistic kidney donors
(instead of the linear number in Proposition 1), the numerator c in
pH = c/n may be required to be quite large (although still con-
stant), the λ sensitivity constant quite small, and the result also
holds with constant positive probability instead of holding with
probability approaching one. We feel this makes Proposition 1 a
more relevant result overall than Proposition 2 for the composition
(in terms of pool sensitization and number of altruistic donors) of
currently fielded kidney exchanges.



the generator algorithm would provide realistic generation
of non-US compatibility graphs.)

We generate kidney exchange compatibility graphs in ac-
cordance with Saidman et al. (2006); however, the compati-
bility of a potential liver donor with a candidate differs from
that of a potential kidney donor in three critical ways. While
a donor and candidate must be blood type (ABO) compati-
ble, (a) they need not be HLA-compatible,4 (b) the age of the
donor and candidate makes a significant difference in trans-
plant success (Egawa et al. 2004), and (c) the donor must be
heavier than the candidate (or else the donor’s liver, which
must be cut in two before transplantation, will not be large
enough to support the donor and candidate).

Graph generation is performed as follows. For each can-
didate and donor, we draw a gender (from the 2010 US Cen-
sus Report5); conditioned on gender, we then draw candidate
blood types from the OPTN (Organ Procurement and Trans-
plantation Network6) distribution and donor blood types
from the overall US population.7 We sample ages (depen-
dent on gender) for candidates from the OPTN pool and for
the donors from the 2010 US Census at a granularity level
of one year. Then, given the age and gender (generated sep-
arately from OPTN data for candidate and US Census data
for donors, as described earlier), we sample from a fine-
grained table of weights released by the Center for Disease
Control (McDowell et al. 2008). For candidates requiring a
kidney, HLA is sampled from the OPTN databases. During
edge generation, we include an exogenous “incompatibility
factor” f ∈ [0, 1] that randomly determines an edge failure
even in the case of a compatibility success. This factor is
common in the kidney literature (Ashlagi et al. 2011), and
is used to account for incompleteness of medical knowledge
and temporal fluctuations in candidate-donor compatibility.

The Clearing Algorithm
We now briefly discuss a scalable optimal kidney exchange
clearing algorithm (Abraham, Blum, and Sandholm 2007),
which is used in the US-wide kidney exchange; we adapt
that algorithm for our liver and multi-organ exchange ex-
periments based on characteristics of the graphs generated
using the algorithm described above. At a high level, given a
compatibility graph G = (V,E), the algorithm enumerates
all chains and cycles of length at most L and chooses the
optimal disjoint set of these cycles and chains according to
the objective function of maximizing match cardinality.

In reality the number of cycles is prohibitively large (cu-
bic in |E| for L = 3, and exponential in |E| for un-
bounded chains) to write down in memory. Therefore, solv-
ing this problem hinges on a technique called branch-and-
price (Barnhart et al. 1998), a method for incrementally gen-

4In kidney exchange, tissue type (HLA antibodies and anti-
gens) are an important determinant of compatibility. A candidate
and donor sharing antigen encodings on the same locus are more
likely to result in a rejected kidney. Due to the use of suppressant
drugs, this is a negligible factor in liver transplantation.

5
http://www.census.gov/compendia/statab/cats/population.html

6
http://optn.transplant.hrsa.gov/data/

7
http://bloodcenter.stanford.edu/about_blood/blood_types.html

erating only a small part of the model during tree search,
yet guaranteeing optimality by proving that all the promis-
ing variables have been incorporated into the model. The
actual solver uses several additional techniques to make kid-
ney exchange clearing scalable for memory and time (Abra-
ham, Blum, and Sandholm 2007). It uses empirically and
theoretically motivated heuristics to seed the initial cycle
(i.e., variable) set used on the model, and then incremen-
tally brings cycles into the model depending on their shadow
price, a quantitative estimate of a cycle’s utility given the
current model. Optimality is proven when no cycles can pos-
sibly increase the objective. The algorithm also uses specific
branching heuristics and primal heuristics to construct fea-
sible initial integral solutions at each branch. If these inte-
gral solutions match the (restricted, possibly fractional) LP
solution, then the subtree can be pruned and optimality po-
tentially proven.
A Liver-Specific Cycle Seeding Heuristic. The selection of
the initial seed columns—representing individual cycles—is
a heuristic process. The prior algorithm uses the cycles from
two heuristically-generated feasible solutions (very few such
cycles) and hundreds of thousands of randomly selected cy-
cles from C(L). Since enumerating C(L) in its entirety is
a costly ordeal, their sampling relies on a series of random
walks. Starting at a randomly chosen vertex, a random walk
takes steps to new vertices. At each step, if an edge exists
leading back to the initial vertex, the corresponding cycle is
added to the set of seed cycles and a new start vertex is cho-
sen. This results in a randomized, but not uniformly random,
sampling of all cycles.

We define a different sampling method for the cycle
seeding problem. Our generated liver compatibility graphs
tended to have many more vertices with low out-degree than
the corresponding kidney exchange graphs. These candi-
dates are difficult to match. With this in mind, we conduct a
biased random walk sampling in the same spirit as the prior
algorithm, except weighting the selection of the randomized
start vertex inversely proportional to its out-degree. This bi-
ased sampling of the set of all cycles motivates the solver to
branch on hard-to-match candidate-donor pairs. This can be
done efficiently through an initial sorting of the vertices by
out-degree, a process whose one-time O(|V | log |V |) run-
time is overshadowed by the NP-hard clearing problem.

Experimental Results
We now provide computational results for a hypothetical na-
tionwide liver or multi-organ exchange, using the realistic
data generated above. First, we describe timing and match-
ing results in the static case, where the algorithm sees the
problem in its entirety up front. Second, we describe results
for the dynamic case, where candidate-donor pairs arrive
in the pool over time and are either matched or die wait-
ing. We show results at sizes mirroring an estimated steady-
state size of a US-wide liver exchange. Finally, we explore
the possibility of a multi-organ exchange, where both liver-
and kidney-needing candidates can swap donors in the same
pool. This results in more lives being saved than were the
nation to run separate liver and kidney exchanges.



Static Liver Exchange Experiments
In the static case, the generator outputs a single graph and
the optimization engine solves the clearing problem on this
graph exactly once. Figure 1 shows timing results on liver
exchange graphs of various sizes |V | and exogenous incom-
patibility rates f . Intuitively, when f is low (or zero), the op-
timizer must consider many more edges than when f is high,
resulting in longer runtimes for denser graphs. As expected,
the computation time increases drastically with graph size.
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Figure 1: Match runtime (left) and percentage of candidates
matched (right), varying incompatibility rate f and graph
size |V |.

Figure 1 also shows the percentage of candidates matched
(the number of candidates matched by the algorithm divided
by the total number of candidates in the pool) as a function
of compatibility graph size |V | and exogenous incompati-
bility rate f . Intuitively, when f is held low, the percent-
age of candidates matched is higher than when the incom-
patibility rate is high. Of interest is the match behavior as
|V | increases. Regardless of f , the percentage of candidates
matched increases with the size of the underlying compati-
bility graph. This behavior is similar to that seen in kidney
exchange and motivates the need for a large (i.e., nation-
wide) liver exchange.
Addressing the needs of society. The estimated steady-
state monthly size of the nationwide kidney exchange is
10,000 candidate-donor pairs (Abraham, Blum, and Sand-
holm 2007). The rate of live liver donation is 1/8th of the rate
of live kidney donation (5% of all liver transplants involve
live donors, compared to 40% for kidneys (Brown 2008)),
although this number would hopefully increase due to the
publicity of a successful exchange—we will conservatively
estimate a factor of 1/2 as many live liver donors as kidney
donors in steady-state. With 100,019 candidates currently
waiting for a kidney and 15,770 candidates waiting for a
liver in the US—and half as many live donors available—the
steady-state for a US-wide liver exchange can be estimated
at approximately half of 15,770 / 100,019 ≈ 8% of 10,000,
or roughly 800 candidates. So, our clearing algorithm should
be able to handle batch runs of a nationwide liver exchange.

Dynamic Liver Exchange Experiments
In the dynamic case, a variable number of candidates enter
and leave the pool over a period of multiple time units. While
the fielded nationwide kidney exchange currently operates
under the static paradigm described earlier, recent work in
the kidney exchange community has shown that optimiz-
ing in the dynamic setting leads to both more realistic and

higher cardinality matchings over time (Awasthi and Sand-
holm 2009; Ünver 2010; Dickerson, Procaccia, and Sand-
holm 2012a).

We start with a pool of |V | = 800 candidates assumed to
be highly sensitized patients who built up in the system over
time. These are matched myopically. Given a matched cycle
by the algorithm, we then simulate that transplant actually
succeeding in real life via an exogenous parameter set to
f = 0.7. If any edge in a cycle fails, that entire cycle fails,
and all candidates are returned to the pool (with the failed
edge removed). We simulate candidates leaving the pool (ei-
ther through finding a transplant or dying). On expectation
|Vnew | = 226 new candidates arrive in the pool per month,
and the algorithm continues. We test over 24 months.
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Figure 2: Number of candidates matched per time period in
a dynamic setting over T = 24 months, with an expected
lifetime per candidate of 10 years (left) or 1–2 years (right).

Figure 2 shows the number of candidates matched at each
time period. This is the number of candidates matched by
the algorithm, but before the virtual failures are taken into
account. On the left, 12% of candidates will be alive after
10 years, corresponding to the expected lifetime of a kidney
patient on dialysis waiting for a kidney (USRDS 2007). On
the right, the probability of a candidate dying is set to an ex-
pected life of 1–2 years. This mimics the urgency of needing
a liver transplant. While dialysis can be used to keep a pa-
tient with failed kidneys alive, no such treatment exists for
livers. This corresponds to a drop in the number of candi-
dates matched, due to the decreased number of candidates
in the pool at each time period. (Note that a large number
of candidates are matched per month in the beginning when
the exchange goes live because there is a large pool that has
accumulated. Soon thereafter a steady state is reached.)

Dynamic Bi-Organ Exchange Experiments
In this section, we expand beyond simulating a dynamic
liver exchange to the novel concept of multi-organ exchange.
In the long run, one could imagine exchanges of multiple
different kinds of organs. However, to our knowledge, only
kidneys and livers have ever been swapped (and only sepa-
rately). Therefore, in this section we will focus on kidneys
and livers. We show that combining an independent nation-
wide liver exchange with a nationwide kidney exchange into
a joint kidney-liver exchange results in a statistically sig-
nificant increase in the number of organ transplants, which
aligns with Proposition 1.

We simulate a demographically accurate bi-organ ex-
change featuring candidates in need of either a kidney or
a liver who can swap donors in a combined candidate-donor



pool. Approximately 85% of the candidates in the simulated
pool need kidneys, while the other 15% need livers, as de-
termined by the most recent OPTN waitlist data. We mimic
the experiments in the previous section, with a starting pool
size of |V | = 800 candidates who are highly sensitized and
are assumed to have built up in the pool over time; we also
include 100 altruistic kidney donors who enter the combined
pool at an expected constant rate. We use the same exoge-
nous transplant incompatibility parameter (f = 0.7) as in
the previous section, and simulate candidate-donor pairs en-
tering and exiting the pool in a similar fashion. To generate
the candidates, we draw from the two different US distri-
butions based on whether the candidate needs a kidney or a
liver. Naturally, donors are drawn from the same US distri-
bution in the two cases. We test over 24 months.
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Figure 3: Number of matches in independent liver and kid-
ney exchanges and a combined multi-organ exchange, per
time period, in a dynamic setting over T = 24 months.

Figure 3 shows the number of candidates matched each
month in the combined bi-organ exchange, as well as the
aggregate number of candidates matched while keeping
both liver- and kidney-needing candidates in separate pools.
Clearly evident is the loss of life resulting from keeping both
the liver and kidney pools independent, with the bi-organ ex-
change matching nearly 40 more candidates per month when
compared to the two independent exchanges.

When we compare the total number of matches made over
the entire period simulated above, the difference in lives
saved between two independent pools and the combined bi-
organ pool is more stark. In our experiments, the combined
bi-organ pool produced 16.8% more matches than the sum
of the two independent organ pools. An independent sam-
ples t-test revealed that the difference between the aggregate
number of lives saved using independent, simultaneous liver
and kidney exchanges and using a combined multi-organ ex-
change was significant, t(46) = 31.37, p� 0.0001.

Conclusions and Future Work
We explored the possibility of extending large-scale organ
exchange to include liver lobes, either in conjunction with or
independently of presently fielded kidney exchange. On de-
mographically accurate data, vetted kidney exchange clear-
ing algorithms (with a small tweak) can also clear liver ex-
changes at a projected US nationwide size. We explored the

prospect of multi-organ exchange, where candidates needing
either a liver or kidney can swap willing donors in the same
pool. We showed that such a combination matches linearly
more candidates than maintaining two separate exchanges;
this linear gain is a product of altruistic kidney donors cre-
ating chains that thread through the liver pool. This result
is supported experimentally on demographically accurate
multi-organ exchanges with high statistical significance.

This paper is intended as a first foray into automated liver
and multi-organ exchange. As such, there is much room
for future research (much of which is applicable to other
organ exchange and even to barter exchanges beyond or-
gans), and is motivated by experiences fielding the nation-
wide kidney exchange. One direction of future work is to
take on the slow and politics-laden task of founding a liver
exchange, or including livers in currently fielded kidney ex-
changes. Another is to develop scalable computational meth-
ods for the dynamic problem. Even for kidneys, the best
current techniques are for simplified models (Ünver 2010;
Ashlagi, Jaillet, and Manshadi 2013; Anshelevich et al.
2013) or face computational challenges (Awasthi and Sand-
holm 2009; Dickerson, Procaccia, and Sandholm 2012a).

Even for the static problem, scalability problems tend
to get worse with the inclusion of a recent innovation
in kidney exchange—donation chains started by altruistic
donors. The cycle length cap L no longer applies to chains
since they do not require simultaneous execution. Recent
work explores this innovation, and hits computational lim-
its experimentally with long chains (Ashlagi et al. 2012;
2011; Dickerson, Procaccia, and Sandholm 2012a; 2012b;
Gentry and Segev 2011; Gentry et al. 2009). We do not ex-
pect altruistic donors in liver exchange due to increased risk
for the donor compared to kidney donation, complicating
the ethical considerations of even allowing altruistic donors
in the pool (Woodle et al. 2010). However, that remains to
be seen. In any case, one could include chains started by
kidney-donating altruists into a bi-organ exchange—if the
scalability challenges of chains can be adequately addressed.

Finally, this paper (and most papers on kidney exchange)
deals with optimizing algorithmic organ matches; in real-
ity, most algorithmic matches in fielded kidney exchanges
do not result in an actual transplant. We expect this would
be the case in liver and multi-organ exchange as well, al-
though the exact failure rates for liver and multi-organ ex-
changes would be different than the observed failure rates in
currently fielded kidney exchanges due to the medical and
logistical differences in the organs and the transplant pro-
cesses. Making organ exchange failure-aware is a critical
step toward improving yield; recent work explores this no-
tion (Blum et al. 2013; Dickerson, Procaccia, and Sandholm
2013) to both theoretically and empirically maximize the ex-
pected number of actual transplants (possibly with respect to
some fairness constraints (Dickerson, Procaccia, and Sand-
holm 2014) that could try to balance factors including the in-
creased risk of liver versus kidney donation) stemming from
an algorithmic match.

Regardless, the urgent societal need for liver exchange is
there today, and we hope to be able to address it through a
dedicated or combined liver- or multi-organ exchange.
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Appendix A: A Parameterized, Realistic
Compatibility Graph Generator

In order to create an at-scale nationwide liver or multi-organ
exchange, we first have to develop a compatibility graph
generator with which we can run simulations. First, we draw
data from reliable sources (here, specific to the US). Second,
this data is fed into a graph creation algorithm that proba-
bilistically determines the existence of compatible and in-
compatible candidate-donor pairs, as well as compatibility
constraints between different candidate-donor pairs. In the
large, with high probability, graphs generated by this algo-
rithm will mimic the demographics that would prevail in a
large-scale fielded exchange in the US. (Plugging different
raw data (e.g., age, weight, blood type distributions) into
the generator algorithm would provide realistic generation
of non-US compatibility graphs.) We then conclude the sec-
tion with a comparison of liver exchange graphs generated
by our algorithm to kidney exchange graphs generated by
the standard generator of Saidman et al. (2006). Our gen-
erator is a generalization of (i.e., more powerful than) that
current standard.

Sampling from Real-World Data
Current medical knowledge is incapable of exactly pre-
dicting the compatibility of a particular donor and candi-
date. However, many attributes are known that can guide
doctors—and algorithms—toward a realistic quantification
of the chance of organ rejection. In this section, we describe
these factors and the open source data sets that our algorithm
uses to realistically sample the US population. In the discus-
sions ahead, we use “OPTN” to refer to the data available
from the Organ Procurement and Transplantation Network.8
All OPTN data is current as of November 11, 2011.

Gender While a donor of one gender can donate an or-
gan to a candidate of another gender, we must take gen-
der into account during graph generation. This is because
other traits that affect the probability of a transplant’s suc-
cess (e.g., weight or age) depend on a person’s gender. We
draw candidate genders from the OPTN data set, and donor
genders from the greater US population through the 2010
US Census report.9 Figure 4 shows the distributions of liver-
needing candidates and the natural US population as donors.
Men are very over-represented in the candidate pool. (Note
that similar distributions can be obtained for kidney-needing
candidates, and used in a multi-organ generator.)

Male Female
Candidate 61.71 38.29

Donor 48.53 51.47

Figure 4: Distribution of (liver) candidate and donor gen-
ders, drawn from OPTN and 2010 US Census data, respec-
tively.

8
http://optn.transplant.hrsa.gov/data/

9
http://www.census.gov/compendia/statab/cats/population.html

Blood Type A candidate and donor must be ABO blood
type compatible (e.g., an A-type donor is compatible with
A- and AB-type candidates), although blood type suppres-
sion through drugs is a recent advance that has the poten-
tial to remove this constraint (Takahashi 2007). We draw
candidate blood types from the OPTN distribution (depen-
dent on gender), and donor blood types from the overall
US.10 The OPTN distribution is roughly equal across gen-
ders, and both distributions are roughly equal to each other.
Nevertheless, it is important to have this parameterized ca-
pability in the generator in the event that, for instance, some
“harder” blood type (e.g., AB) gets over-represented in the
candidate pool. Figure 5 shows the exact distribution and
the ABO-compatibility matrix, with percentages shown for
liver-needing candidates.

Donor Candidate
ABO O A B AB

O x x x x
A x x
B x x

AB x
Male Female

ABO Cand. Donor Cand. Donor
O 47.83 44 48.91 44
A 38.39 42 37.08 42
B 11.37 10 11.41 10

AB 2.40 4 2.58 4

Figure 5: Top: ABO blood type compatibility matrix. Marks
indicate a donor (row) as ABO-compatible with a candi-
date (column). Bottom: ABO percentages for candidates and
donors.

Age Age plays a role in transplantation, but we were un-
able to find any specific quantification of the amount by
which increased donor or candidate age (or, in the case of
children, decreased candidate age) affects this success rate.
Even without this information, age is important to model
because it will allow us to generate a realistic distribution
of candidate and donor weights, a trait whose effect is easily
quantified. We sample ages (dependent on gender) for candi-
dates from the OPTN pool and for the donors from the 2010
US Census at a granularity level of one year. To save space,
Figure 6 does not separate the population into one-year seg-
ments as rows, while our generator does. In our generator we
also take into account the constraint that organ donors must
be 18 years old, and we normalize the distributions accord-
ingly.

Weight Unlike in kidney exchange, the physical weight of
both the candidate and donor play an enormous role in the
feasibility of liver transplantation.11 Intuitively, the size of a
liver is generally proportional to the size of the person who
grew it. In live liver donation, the donor’s liver is cut in two

10
http://bloodcenter.stanford.edu/about_blood/blood_types.html

11Large weight differences between donor and candidate can
factor into kidney exchange as well, but this has not been taken into
account in either the current state of the art generator or the weight-
ing algorithms used in the fielded US-wide kidney exchange.



Male Female
Age Candidate Donor Candidate Donor
<1 0.259 – 0.465 –
1–5 0.837 – 1.220 –

5–10 0.568 – 1.075 –
11–17 0.717 – 1.444 –
18–34 4.193 31.883 5.554 29.357
35–49 14.851 27.798 14.976 26.617
50–64 64.851 25.066 57.079 25.053
≥65 13.725 15.252 18.186 18.972

Figure 6: Probability distribution of ages, respective of can-
didate and donor gender.

(one lobe is removed). For both donor and candidate to re-
main healthy, the slice of liver left in the donor must be large
enough to maintain her life, and the slice of liver given to the
candidate must be large enough to maintain his. Thus, a gen-
eral rule of thumb that the donor must weigh as much as (or
more than) the candidate is in place in live liver donation.
We adopt that convention for liver exchange.

Given the age and gender (generated separately from
OPTN data for candidate and US Census data for donors,
as described earlier), we sample from a fine-grained table
of weights recently released by the Center for Disease Con-
trol (McDowell et al. 2008). This data, given on a by-year
basis until age 20 and in increments of 5 years thereafter, in-
cludes mean weights, sample errors, and sample sizes. From
this, we calculate a standard deviation and sample from a
normal distribution with this mean and standard deviation.
While there are issues with this method—most notably that
the candidate weights may be drawn from a different distri-
bution than the general US public, and that human weights
are not distributed normally but are skewed toward weighing
more—we feel that this sampling approach provides a rea-
sonable starting point for future generation techniques. The
full table of weights is omitted due to space.

HLA Antibodies and Antigens In kidney exchange, tis-
sue type (HLA antibodies and antigens) are another very im-
portant determinant of compatibility. A candidate and donor
sharing antigen encoding on the same locus possibly results
in a positive virtual crossmatch across antigens. A positive
virtual crossmatch means that the system can detect incom-
patibility. In kidney exchange graph generation, this is quan-
tified by the probability that the candidate is not tissue-type
compatible with a randomly drawn donor. This probability
is called %PRA for panel reactivity antibody (Saidman et
al. 2006). Furthermore, tissue type can change over time, re-
sulting in the need for contingency plans after the time of
algorithmic matching but before the surgery. For example,
if the candidate comes down with a cold or flu days before
surgery, the surgery may need to be rescheduled or perma-
nently canceled.

In liver exchange, %PRA plays less of a role due to the
use of suppressant drugs. As such, while the generator sup-
ports %PRA (and can use sampled data from the OPTN
databases12), we exclude %PRA in our liver experiments.

12The relationship (e.g., spousal, parent-child) between candi-

However, %PRA is included in our multi-organ experiments
for kidney candidates.

Generator Algorithm
We now give the method for generating the compatibility
graph from data sampled from the sources given in the pre-
vious section. Note that the probability distributions from
the previous section (and the organs to which they pertain)
can be swapped without affecting the correctness of the al-
gorithm beyond the “is compatible” checks described below.

Algorithm 1: Compatibility graph generator
Input: Integer n, real number f , real-world data
Output: Compatibility graph G = (V,E) s.t. |V | = n
begin

G := (V = ∅, E = ∅)
while |V | < n do

c = candidate, d = donor
c.drawOrganType()
{c, d}.drawGender()
{c, d}.drawBlood(gender)
{c, d}.drawAge(gender)
{c, d}.drawTissueType(gender)
{c, d}.drawWeight(gender , age)
if ¬isCompatible(c, d) then

V = V ∪ {vc,d}

for vi, vj ∈ V s.t. Vi 6= Vj do
if isCompatible(vcj , vdi ) and x ∈ U [0, 1] > f then

E = E ∪ {(vi, vj)}

return directed compatibility graph G

Algorithm 1 gives a two-step process for generating a
compatibility graph G = (V,E), given a number n, such
that |V | = n. First, sample from real-world data until n in-
compatible candidate-donor pairs are generated. When gen-
erating a liver exchange, one would set the algorithm to sam-
ple from the liver data given above; however, when generat-
ing a multi-organ exchange consisting of livers and kidneys,
one would include the proper proportions of kidney and liver
candidates and sample from the appropriate real-world data
per organ. As of the writing of this paper, the kidney waitlist
is 5.84 times longer than the liver waitlist, which would be
reflected in this algorithm.

If needed, the algorithm can easily be augmented to keep
track of any compatible candidate-donor pairs generated. As
is common practice in kidney exchange, these pairs are as-
sumed to match on their own, and do not enter the pool.13

Other additions could be made to the algorithm as data be-
comes available (e.g., correlating donor and candidate char-
acteristics under the assumption that a donor may likely
come from the candidate’s family).

date and donor can yield information on HLA compatibility, and is
supported by the generator of Saidman et al. and our generator.

13Recent kidney exchange research suggests that incentivizing
even compatible pairs to join a nationwide exchange could result
in better matchings (Rees et al. 2009; Ashlagi and Roth 2011).



After n incompatible candidate-donor pairs are generated,
the algorithm steps through each pair vi, vj of candidate-
donor pairs and, if the latter’s candidate vcj is compatible
with the former’s donor vdi , then a directed edge is added
from vi to vj . Note the inclusion of an exogenous “failure
factor” f ∈ [0, 1] that, if prescribed, randomly determines
an edge failure even in the case of a compatibility success.
This factor is common in the kidney literature (Ashlagi et al.
2011), and is used to account for incompleteness of medical
knowledge and, during simulation, temporal fluctuations in
candidate-donor compatibility.

Algorithm 1 calls a function isCompatible(c,d). In the
liver case, this checks whether two patients are ABO-
compatible and whether the donor’s weight is greater than
or equal to the candidate’s weight. In the kidney case,
this checks whether two patients are ABO-compatible and
whether a virtual crossmatch based on tissue type returns
negative. As better medical knowledge and data become
available, this function can be generalized to take new com-
patibility aspects into account.

Comparison to Kidney Exchange
We now compare our generator to the current state of the art
(kidney) exchange generator (Saidman et al. 2006). While
the generators and data are similar in spirit, the medical dif-
ferences between kidney and liver compatibility create dis-
tinctly different compatibility graphs both at the small and
large scale. We will discuss those differences below.
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Figure 7: #Edges (in thousands) in generated liver and kid-
ney compatibility graphs (100 graphs per |V |). The kidney
graphs are denser than the liver graphs.

Figure 7 plots the average number of edges in the liver-
only compatibility graphs, using the generator in this paper,
against the average number of edges in the kidney compati-
bility graphs generated by the state of the art, as the num-
ber of candidate-donor pairs increases. The kidney com-
patibility graphs are, for graph sizes above 64, denser than
comparably-sized liver compatibility graphs. This is inter-
esting because it shows that, even though the liver exchange
graphs do not need to take %PRA (i.e., HLA incompatibil-
ity) into account, their sensitivity to age and weight distri-

butions proves to be more constricting than HLA sensitiv-
ity! Regardless, neither the liver nor the kidney graphs are
sparse in the classical sense of the word: at |V | = 1024, the
number of edges in the liver graph is 26% of the total pos-
sible edges in a 1024-clique. This lack of sparsity drives the
experimental computational complexity of solving the real-
world clearing problem.
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Figure 8: Cumulative distribution functions of the out-
degree of vertices as we increase |V | (varies per row) and
exogenous failure rate f (varies by column), shown for the
liver graphs (in white) and kidney graphs (in gray). Note the
divergence between kidney and liver graph as the exogenous
failure rate increases, as well as the three qualitative sections
in the kidney graphs due to the three different %PRA classes.

Figure 8 enumerates the differences in the out-degree of
the vertices in compatibility graphs for liver-only exchange
generated using our algorithm (shown in white) and com-
patibility graphs for kidney exchange from the Saidman et
al. generator (shown in gray). The size of the graph, |V |,
is held constant along the rows, while the exogenous fail-
ure rate (f ) between two otherwise compatible candidates
and donors is held constant in each column. We vary |V |
and f ∈ {0.0, 0.2, . . . , 0.9}. Note that there is no notion of
an exogenous failure rate in the kidney graphs (although the
%PRA virtual crossmatch simulation is similar to an exoge-
nous failure rate, but not parameterized); as such, the kidney
exchange graphs vary only in terms of cardinality.

The cumulative distribution functions over the out-
degrees of vertices, shown in Figure 8, exhibit interesting
behavior. For example, there are more vertices with low de-
gree in the liver exchange graphs than in the kidney ex-
change graphs. More interesting is the behavior exhibited by
the kidney exchange graphs as |V | increases. For instance,
when |V | = 1024, we see three distinct out-degree sec-
tions in the kidney exchange graphs. These are an artifact of
the somewhat ad-hoc method of doing %PRA virtual cross-
match tests in the Saidman et al. generator. The generator
groups pairs into three sensitivity levels (“high”, “medium”,
and “low”). As |V | increases, those patients who are highly
sensitized tend toward very few edges, while those at the
medium and low sensitivity levels tend toward a medium and
high number of edges, respectively. We believe that this is an



artifact of the generator by (Saidman et al. 2006) and is not
representative of the real kidney exchange data. Our gener-
ator (even if used for kidneys) does not have such coarse ar-
tifacting because it can bucket sensitivity into finer-grained
classes.

Appendix B: Theoretical Statements
We now support the theoretical claims made in the paper.
Specifically, we provide a proof of Proposition 1 in the
sparse organ exchange model, as stated in the paper. We also
formalize (as Proposition 3) our statement at the end of the
theory section regarding a linear gain in the size of the effi-
cient matching of a combined dense multi-organ exchange.

Sparse Kidney Exchange
We now restate and sketch a proof of Proposition 1.

Proposition 1. Consider β > 0 and γ > 0, kidney compati-
bility graph DK with nK pairs and t(nK) = βnK altruistic
donors, and liver compatibility graph DL with nL = γnK
pairs. Then any efficient matching on D = join(DK , DL)
matches Ω(nK) more pairs than the aggregate of any such
efficient matchings on DK and DL (with probability ap-
proaching 1 as nK approaches∞).

Proof sketch. The proposition follows from the proof of
Theorem 5.4 of Ashlagi et al. (2012), which directly sup-
ports a similar result as Theorem 5.2 of Ashlagi et al. (2012).
In that Theorem 5.4 (which assumes a kidney exchange
graph similar to ours, with no altruistic donors), they show
that there are a linear in n (nK for us) number of “good cy-
cles” of some constant length c. These “good cycles” have
a single vertex u in the lowly-sensitized portion of DK

that is only connected to a single vertex v1 in the highly-
sensitized portion of DK (and possibly other vertices in the
lowly-sensitized portion). From v1 there then exists a path
〈v1, . . . , vc−1〉 of highly-sensitized vertices with out- and
in-degree one such that vc−1 connects back to u. Finding
that path 〈v1, . . . , vc−1〉 relies on a well-known result (see,
e.g., (Janson, Luczak, and Rucinski 2011)) that there ex-
ist linearly many isolated tree-like structures in a sparse
graph (like the one induced by our highly-sensitized ver-
tices). They show an additive linear gain in increasing cycle
caps by first taking some optimal cover of cycles of length at
most c and augmenting it to include enough of these “good
cycles” of length at most c+ 1—of which there are linearly
many—resulting in the gain.

We assume a constant cycle cap of c and no chain cap,
which mimics real-world kidney exchanges and would prob-
ably be the case in a fielded liver exchange (if altruistic
donors existed). Note that regardless of cycle cap, any ef-
ficient matching will match all lowly-sensitized pairs, via
direct application of well-known matching results on dense
Erdős-Rènyi graphs. Under this constant cycle cap assump-
tion, there exist a linear number of highly-sensitized vertices
in the liver pool DL that remain unmatched by an efficient
matching of cycles of length at most c (recall there are no
chains in the liver pool). These are the linearly many iso-
lated highly-sensitized paths that are part of “good cycles”

of length strictly greater than c and thus cannot be legally
matched. By gluing the two pools DL and DK together,
these isolated vertices gain access to a linear number of al-
truists who, as in Theorem 5.2 of Ashlagi et al. (2012), act
as the u vertex in “good cycles” of length greater than c that
are now no longer required to connect back to u. Given a lin-
early larger combined pool (since the remainder of highly-
sensitized liver pairs is linear in the size of DL, which is
linear in the size of DK), we get an additive linear overall
gain via the results of Theorem 5.4 of Ashlagi et al. (2012)
by combining pools.

Dense Kidney Exchange
At the end of the theory section, we state: “... the efficiency
results in the dense model without chains and with chains
(Proposition 5.1 of Ashlagi and Roth (2011) and Theorem
1 of Dickerson, Procaccia, and Sandholm (2012b), respec-
tively) can be applied directly to independent liver exchange
and multi-organ exchange to yield efficient matchings con-
sisting of cycles (and chains) of length at most 3, with linear
expected overall gain from combining pools (given a linear
number of altruists) for large enough compatibility graphs.”
We formalize and support this statement in this section.

The Dense Model We begin by overviewing the dense
model of kidney exchange (Roth, Sönmez, and Ünver 2004;
2005; Roth, Sömnez, and Ünver 2005). This model concen-
trates on blood types of donors and patients. At a very high
level, human blood is split into four types—O, A, B, and
AB—based on the presence or absence of type A and type
B proteins. Ignoring other potential complications, a type O
kidney can be transplanted into any patient; type A and B
kidneys can be transplanted into A and B patients respec-
tively or an AB patient; and type AB kidneys can only be
transplanted into type AB patients. Therefore, some patients
are more difficult to match with a random donor than oth-
ers. O-patients are the hardest to match because only O-type
kidneys can be given to them. Similarly, O-donors are the
easiest to match.

An under-demanded pair is any pair such that the donor is
not ABO-compatible with the patient. If an under-demanded
pair contains only type A and B blood, it is called reciprocal.
Any pair in the pool such that the donor is ABO-compatible
with the candidate is called over-demanded. Furthermore,
if a donor and candidate share the same blood type, they
are a self-demanded pair. Under-demanded and reciprocal
pairs are intuitively “harder” to match than over-demanded
and self-demanded pairs. Note that this is not necessarily the
case if sensitization, the probability of matching with a ran-
dom donor, is considered. For example, an A-type patient
who is lowly-sensitized is typically easier to match than an
O-type patient who is highly-sensitized; however, the dense
model does not consider different degrees of sensitization.
The dense model critically assumes that a donor and patient
who are blood type compatible are tissue type incompatible
with constant probability p̄. This differs from the model we
used in Propositions 1 and 2, where lowly-sensitized patients
had a constant edge probability while highly-sensitized pa-
tients did not (which more closely mimics reality). It also



denotes by µX the frequency of blood type X , and assumes
µO < 3µA/2 and an ordering µO > µA > µB > µAB. The
United States national blood type distribution satisfies these
constraints.

Dense Theoretical Results Under the realistic assump-
tions on blood type distributions stated above, assuming no
chains and only patients who need kidneys, Proposition 5.1
of Ashlagi and Roth (2011) states that an efficient alloca-
tion exists (with high probability) that uses only cycles of
length at most 3. Theorem 1 of Dickerson, Procaccia, and
Sandholm (2012b) extends this result in a pool with chains
(but still only patients who need kidneys), stating that an ef-
ficient allocation exists (with high probability) using only
cycles and chains of length at most 3. Both of these results
are “in the large” and rely on the fact that the size of a set S
will be very close to its expectation as |S| → ∞. Figure 9 re-
produces the efficient allocation from Dickerson, Procaccia,
and Sandholm as an aid to the reader.

B-AB O-B

B

AB-B

O AB-O B-O

A-AB O-A A-B B-A

AB-A

A

A-O

Figure 9: Efficient allocation presented in Dickerson, Pro-
caccia, and Sandholm (2012b). Altruistic donors willing to
give kidneys are shown as rectangles; candidate-donor pairs
as ovals. Over-demanded pairs are gray, under-demanded are
white, and reciprocal pairs are black. Dashed edges are those
that may be matched in cycles or chains, while complete
edges are those that are matched in cycles only.

Only Livers. We first look at dense liver exchange in this
model. We note that the blood type distributional require-
ment is satisfied by patients in need of livers, just as it is with
patients who need kidneys. Thus, under the dense model,
a liver-only compatibility graph looks exactly the same as
a kidney-only compatibility graph (albeit with no chains).
Thus, the efficiency result of Ashlagi and Roth (2011) can
be applied directly to liver-only compatibility graphs. If an
altruistic liver donor existed in a liver-only compatibility
graph, then the result of Dickerson, Procaccia, and Sand-
holm (2012b) would be directly applicable instead.
Multi-Organ Exchange. Next, we consider dense multi-
organ exchange in this model. In this model, there will exist
altruistic donors willing to give a kidney but not a liver, as
motivated earlier in our paper.

We assume the same blood type distributions of Ash-
lagi and Roth (2011) for both liver and kidney patients and
donors. We also assume a directed multi-organ dense com-
patibility graph D, with nK pairs needing a kidney and

nL = γnK pairs needing a liver, for some γ > 0. As mo-
tivated in our paper, altruistic kidney donors will not donate
directly to liver patients, but may trigger chains that result
in a kidney pair donating to a liver pair. Thus, there are no
outgoing edges in D from altruistic kidney donors to pairs
needing a liver.

In Proposition 3, we show that if there are enough altruis-
tic kidney donors, the size of an efficient matching on D is
larger by an additive linear fraction than the size of the ag-
gregate of efficient matchings onDL andDK , the subgraphs
induced by only the vertices consisting of pairs needing liv-
ers and kidneys, respectively. Formally, let DX

K be the sub-
graph induced by only altruistic kidney donors of blood type
X ∈ {O,A,B,AB}.
Proposition 3. Consider βA = µAµAB, βB = µBµAB, and
γ > 0, kidney compatibility graph DK with nK pairs, and
liver compatibility graph DL with nL = γnK pairs. If at
least one of |DA

K | > βAnK or |DB
K | > βBnK , then any effi-

cient matching onD = join(DK , DL) matches Ω(nk) more
pairs than the aggregate of any such efficient matchings on
DK and DL (with probability approaching 1 as nK →∞).

Proof sketch. From Ashlagi and Roth (2011), if a vertex v
participates in an exchange with some under-demanded ver-
tex v′, then v helps v′. Let pairs of type X-Y have X-type
patients and and Y -type donors, for X,Y ∈ {O,A,B,AB}.
Note that AB-altruists cannot help under-demanded pairs,
A- and B-altruists can only help A-AB and B-AB, respec-
tively, under-demanded pairs, and O-donors can trigger two
types of chains of length 3 containing under-demanded
pairs: O-altruist, O-A pair, A-AB pair, or O-altruist, O-B
pair, B-AB pair.

First, take the efficient matching result of Ashlagi and
Roth (2011) and apply it to DL. Only (some) under-
demanded liver vertices remain unmatched. Let DU

L repre-
sent these vertices. Second, apply the efficient matching re-
sult shown in Figure 9 to DK . Again, only (some) under-
demanded kidney vertices DU

K remain unmatched.
As in Dickerson, Procaccia, and Sandholm (2012b),

since applying these two matchings results in all over-
demanded, self-demanded, and reciprocally-demanded pairs
being matched (assuming |S| approaches its expectation as
|S| → ∞ for any set S), we must only exhaustively consider
all ways of matching under-demanded pairs. Bolded items in
the list trigger a linear gain in the combined efficient match,
while all other items show a loss in efficiency of at most
zero. This guarantees a linear gain overall.

• AB-donors: Altruistic AB-donors can only help over- and
self-demanded (AB-AB) pairs, both of which are matched
entirely.

• A-donors: Of the under-demanded pairs, altruistic A-
donors can only help A-AB pairs. In the matching in Fig-
ure 9, A-donors donate to the A-AB pairs until one of
the two sets is exhausted. Under our assumption, |V A

K | >
µAµABnK = |V A-AB

K |, so the A-AB set will be exhausted,
leaving some A-donors unallocated. These remaining A-
donors can be threaded into the liver pool through A-A
kidney pairs to match with remainder under-demanded



A-AB liver pairs. This use of an A-A results in 0 ef-
ficiency loss, since there remains a perfect matching in
V A-A; thus, we gain 1 match for each of the remaining
|V A

K | − µAµABnK A-donors, which is a gain of Ω(nK).
• B-donors: Of the under-demanded pairs, altruistic B-

donors can only help B-AB pairs. Under a symmetric
argument as the A-donors above, combining pools gains
|V B

K | − µBµABnK extra matches by threading through B-
B kidney pairs into the unallocated under-demanded liver
pool, which is a gain of Ω(nK).

• O-donors: In the matching of Dickerson, Procaccia, and
Sandholm (2012b), some O-donors may be used in 2-
chains with remaining under-demanded pairs in DK . It
is possible that these O-donors could be threaded through
an under-demanded kidney pair into an under-demanded
liver pair to form a 3-chain at utility gain of 1 (but not
necessary for this proof).

• Non-altruistic vertices: Self-demanded and reciprocally-
demanded pairs cannot help under-demanded pairs with-
out involving altruistic donors or over-demanded pairs.
AB-O vertices are the only pairs that can help at most
two under-demanded pairs (either O-A and A-AB, or O-
B and B-AB). In the Dickerson, Procaccia, and Sand-
holm (2012b) allocation, most AB-O pairs are used in
3-cycles with two under-demanded pairs; however, some
may be used in 2-cycles with a single under-demanded
pair. Reallocating these are not necessary for this proof.

Since at least one of the minimum size constraints on the set
of altruistic A-donors or B-donors is satisfied by the propo-
sition statement’s assumptions, we are guaranteed Ω(nK)
additional matches by combining both pools.


